/** * \file psa/crypto.h * \brief Platform Security Architecture cryptography module */ #ifndef PSA_CRYPTO_H #define PSA_CRYPTO_H #include "crypto_platform.h" #include #ifdef __DOXYGEN_ONLY__ /* This __DOXYGEN_ONLY__ block contains mock definitions for things that * must be defined in the crypto_platform.h header. These mock definitions * are present in this file as a convenience to generate pretty-printed * documentation that includes those definitions. */ /** \defgroup platform Implementation-specific definitions * @{ */ /** \brief Key slot number. * * This type represents key slots. It must be an unsigned integral * type. The choice of type is implementation-dependent. * 0 is not a valid key slot number. The meaning of other values is * implementation dependent. * * At any given point in time, each key slot either contains a * cryptographic object, or is empty. Key slots are persistent: * once set, the cryptographic object remains in the key slot until * explicitly destroyed. */ typedef _unsigned_integral_type_ psa_key_slot_t; /**@}*/ #endif /* __DOXYGEN_ONLY__ */ #ifdef __cplusplus extern "C" { #endif /** \defgroup basic Basic definitions * @{ */ /** * \brief Function return status. * * Zero indicates success, anything else indicates an error. */ typedef enum { /** The action was completed successfully. */ PSA_SUCCESS = 0, /** The requested operation or a parameter is not supported by this implementation. */ PSA_ERROR_NOT_SUPPORTED, /** The requested action is denied by a policy. */ PSA_ERROR_NOT_PERMITTED, /** An output buffer is too small. */ PSA_ERROR_BUFFER_TOO_SMALL, /** A slot is occupied, but must be empty to carry out the requested action. */ PSA_ERROR_OCCUPIED_SLOT, /** A slot is empty, but must be occupied to carry out the requested action. */ PSA_ERROR_EMPTY_SLOT, /** The requested action cannot be performed in the current state. */ PSA_ERROR_BAD_STATE, /** The parameters passed to the function are invalid. */ PSA_ERROR_INVALID_ARGUMENT, /** There is not enough runtime memory. */ PSA_ERROR_INSUFFICIENT_MEMORY, /** There is not enough persistent storage. */ PSA_ERROR_INSUFFICIENT_STORAGE, /** There was a communication failure inside the implementation. */ PSA_ERROR_COMMUNICATION_FAILURE, /** There was a storage failure that may have led to data loss. */ PSA_ERROR_STORAGE_FAILURE, /** A hardware failure was detected. */ PSA_ERROR_HARDWARE_FAILURE, /** A tampering attempt was detected. */ PSA_ERROR_TAMPERING_DETECTED, /** There is not enough entropy to generate random data needed for the requested action. */ PSA_ERROR_INSUFFICIENT_ENTROPY, /** The signature, MAC or hash is incorrect. */ PSA_ERROR_INVALID_SIGNATURE, /** The decrypted padding is incorrect. */ PSA_ERROR_INVALID_PADDING, /** An error occurred that does not correspond to any defined failure cause. */ PSA_ERROR_UNKNOWN_ERROR, } psa_status_t; /** * \brief Library initialization. * * Applications must call this function before calling any other * function in this module. * * Applications may call this function more than once. Once a call * succeeds, subsequent calls are guaranteed to succeed. * * \retval PSA_SUCCESS * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED * \retval PSA_ERROR_INSUFFICIENT_ENTROPY */ psa_status_t psa_crypto_init(void); #define PSA_BITS_TO_BYTES(bits) (((bits) + 7) / 8) #define PSA_BYTES_TO_BITS(bytes) ((bytes) * 8) /**@}*/ /** \defgroup crypto_types Key and algorithm types * @{ */ /** \brief Encoding of a key type. */ typedef uint32_t psa_key_type_t; /** An invalid key type value. * * Zero is not the encoding of any key type. */ #define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000) /** Vendor-defined flag * * Key types defined by this standard will never have the * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should * respect the bitwise structure used by standard encodings whenever practical. */ #define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000) #define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7e000000) #define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x02000000) #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x04000000) #define PSA_KEY_TYPE_CATEGORY_ASYMMETRIC ((psa_key_type_t)0x06000000) #define PSA_KEY_TYPE_PAIR_FLAG ((psa_key_type_t)0x01000000) #define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x02000001) #define PSA_KEY_TYPE_AES ((psa_key_type_t)0x04000001) #define PSA_KEY_TYPE_DES ((psa_key_type_t)0x04000002) #define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x04000003) #define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x04000004) /** RSA public key. */ #define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x06010000) /** RSA key pair (private and public key). */ #define PSA_KEY_TYPE_RSA_KEYPAIR ((psa_key_type_t)0x07010000) /** DSA public key. */ #define PSA_KEY_TYPE_DSA_PUBLIC_KEY ((psa_key_type_t)0x06020000) /** DSA key pair (private and public key). */ #define PSA_KEY_TYPE_DSA_KEYPAIR ((psa_key_type_t)0x07020000) #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x06030000) #define PSA_KEY_TYPE_ECC_KEYPAIR_BASE ((psa_key_type_t)0x07030000) #define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff) #define PSA_KEY_TYPE_ECC_KEYPAIR(curve) \ (PSA_KEY_TYPE_ECC_KEYPAIR_BASE | (curve)) #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \ (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve)) /** Whether a key type is vendor-defined. */ #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \ (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0) #define PSA_KEY_TYPE_IS_RAW_BYTES(type) \ (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_RAW_DATA || \ ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC) /** Whether a key type is asymmetric: either a key pair or a public key. */ #define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \ (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_ASYMMETRIC) /** Whether a key type is the public part of a key pair. */ #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \ (((type) & (PSA_KEY_TYPE_CATEGORY_MASK | PSA_KEY_TYPE_PAIR_FLAG) == \ PSA_KEY_TYPE_CATEGORY_ASYMMETRIC)) /** Whether a key type is a key pair containing a private part and a public * part. */ #define PSA_KEY_TYPE_IS_KEYPAIR(type) \ (((type) & (PSA_KEY_TYPE_CATEGORY_MASK | PSA_KEY_TYPE_PAIR_FLAG)) == \ (PSA_KEY_TYPE_CATEGORY_ASYMMETRIC | PSA_KEY_TYPE_PAIR_FLAG)) /** Whether a key type is an RSA key pair or public key. */ /** The key pair type corresponding to a public key type. */ #define PSA_KEY_TYPE_KEYPAIR_OF_PUBLIC_KEY(type) \ ((type) | PSA_KEY_TYPE_PAIR_FLAG) /** The public key type corresponding to a key pair type. */ #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) \ ((type) & ~PSA_KEY_TYPE_PAIR_FLAG) #define PSA_KEY_TYPE_IS_RSA(type) \ (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY) /** Whether a key type is an elliptic curve key pair or public key. */ #define PSA_KEY_TYPE_IS_ECC(type) \ ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) & \ ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE) /** The block size of a block cipher. * * \param type A cipher key type (value of type #psa_key_type_t). * * \return The block size for a block cipher, or 1 for a stream cipher. * The return value is undefined if \c type does not identify * a cipher algorithm. * * \note This macro returns a compile-time constant if its argument is one. * * \warning This macro may evaluate its argument multiple times. */ #define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \ ( \ (type) == PSA_KEY_TYPE_AES ? 16 : \ (type) == PSA_KEY_TYPE_DES ? 8 : \ (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \ (type) == PSA_KEY_TYPE_ARC4 ? 1 : \ 0) /** \brief Encoding of a cryptographic algorithm. * * For algorithms that can be applied to multiple key types, this type * does not encode the key type. For example, for symmetric ciphers * based on a block cipher, #psa_algorithm_t encodes the block cipher * mode and the padding mode while the block cipher itself is encoded * via #psa_key_type_t. */ typedef uint32_t psa_algorithm_t; #define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000) #define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000) #define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000) #define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000) #define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000) #define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000) #define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000) #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000) #define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x22000000) #define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x30000000) #define PSA_ALG_IS_VENDOR_DEFINED(alg) \ (((alg) & PSA_ALG_VENDOR_FLAG) != 0) /** Whether the specified algorithm is a hash algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \c alg is a hash algorithm, 0 otherwise. * This macro may return either 0 or 1 if \c alg is not a valid * algorithm identifier. */ #define PSA_ALG_IS_HASH(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH) #define PSA_ALG_IS_MAC(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC) #define PSA_ALG_IS_CIPHER(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER) #define PSA_ALG_IS_AEAD(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD) #define PSA_ALG_IS_SIGN(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN) #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION) #define PSA_ALG_IS_KEY_AGREEMENT(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT) #define PSA_ALG_IS_KEY_DERIVATION(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION) #define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff) #define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001) #define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002) #define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003) #define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004) #define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005) #define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008) #define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009) #define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a) #define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b) #define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c) #define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d) #define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010) #define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011) #define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012) #define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013) #define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000) #define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000) #define PSA_ALG_HMAC(hash_alg) \ (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_HMAC_HASH(hmac_alg) \ (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_IS_HMAC(alg) \ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ PSA_ALG_HMAC_BASE) #define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000) #define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001) #define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002) #define PSA_ALG_GMAC ((psa_algorithm_t)0x02c00003) #define PSA_ALG_IS_CIPHER_MAC(alg) \ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ PSA_ALG_CIPHER_MAC_BASE) #define PSA_ALG_CIPHER_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000) #define PSA_ALG_BLOCK_CIPHER_BASE ((psa_algorithm_t)0x04000000) #define PSA_ALG_BLOCK_CIPHER_MODE_MASK ((psa_algorithm_t)0x000000ff) #define PSA_ALG_BLOCK_CIPHER_PADDING_MASK ((psa_algorithm_t)0x003f0000) #define PSA_ALG_BLOCK_CIPHER_PAD_NONE ((psa_algorithm_t)0x00000000) #define PSA_ALG_BLOCK_CIPHER_PAD_PKCS7 ((psa_algorithm_t)0x00010000) #define PSA_ALG_IS_BLOCK_CIPHER(alg) \ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_SUBCATEGORY_MASK)) == \ PSA_ALG_BLOCK_CIPHER_BASE) #define PSA_ALG_CBC_BASE ((psa_algorithm_t)0x04000001) #define PSA_ALG_CFB_BASE ((psa_algorithm_t)0x04000002) #define PSA_ALG_OFB_BASE ((psa_algorithm_t)0x04000003) #define PSA_ALG_XTS_BASE ((psa_algorithm_t)0x04000004) #define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800000) #define PSA_ALG_CTR ((psa_algorithm_t)0x04800001) #define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800002) #define PSA_ALG_CCM ((psa_algorithm_t)0x06000001) #define PSA_ALG_GCM ((psa_algorithm_t)0x06000002) #define PSA_ALG_RSA_PKCS1V15_RAW ((psa_algorithm_t)0x10010000) #define PSA_ALG_RSA_PSS_MGF1 ((psa_algorithm_t)0x10020000) #define PSA_ALG_RSA_OAEP ((psa_algorithm_t)0x12020000) #define PSA_ALG_RSA_PKCS1V15(hash_alg) \ (PSA_ALG_RSA_PKCS1V15_RAW | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_IS_RSA_PKCS1V15(alg) \ (((alg) & 0x7fffff00) == PSA_ALG_RSA_PKCS1V15_RAW) #define PSA_ALG_RSA_GET_HASH(alg) \ (((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH) /**@}*/ /** \defgroup key_management Key management * @{ */ /** * \brief Import a key in binary format. * * This function supports any output from psa_export_key(). Refer to the * documentation of psa_export_key() for the format for each key type. * * \param key Slot where the key will be stored. This must be a * valid slot for a key of the chosen type. It must * be unoccupied. * \param type Key type (a \c PSA_KEY_TYPE_XXX value). * \param data Buffer containing the key data. * \param data_length Size of the \c data buffer in bytes. * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_NOT_SUPPORTED * The key type or key size is not supported. * \retval PSA_ERROR_INVALID_ARGUMENT * The key slot is invalid, * or the key data is not correctly formatted. * \retval PSA_ERROR_OCCUPIED_SLOT There is already a key in the specified slot. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_import_key(psa_key_slot_t key, psa_key_type_t type, const uint8_t *data, size_t data_length); /** * \brief Destroy a key. * * \retval PSA_SUCCESS * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_destroy_key(psa_key_slot_t key); /** * \brief Get basic metadata about a key. * * \param key Slot whose content is queried. This must * be an occupied key slot. * \param type On success, the key type (a \c PSA_KEY_TYPE_XXX value). * This may be a null pointer, in which case the key type * is not written. * \param bits On success, the key size in bits. * This may be a null pointer, in which case the key type * is not written. * * \retval PSA_SUCCESS * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_get_key_information(psa_key_slot_t key, psa_key_type_t *type, size_t *bits); /** * \brief Export a key in binary format. * * The output of this function can be passed to psa_import_key() to * create an equivalent object. * * If a key is created with psa_import_key() and then exported with * this function, it is not guaranteed that the resulting data is * identical: the implementation may choose a different representation * of the same key if the format permits it. * * For standard key types, the output format is as follows: * * - For symmetric keys (including MAC keys), the format is the * raw bytes of the key. * - For DES, the key data consists of 8 bytes. The parity bits must be * correct. * - For Triple-DES, the format is the concatenation of the * two or three DES keys. * - For RSA key pairs (#PSA_KEY_TYPE_RSA_KEYPAIR), the format * is the non-encrypted DER representation defined by PKCS\#8 (RFC 5208) * as PrivateKeyInfo. * - For RSA public keys (#PSA_KEY_TYPE_RSA_PUBLIC_KEY), the format * is the DER representation defined by RFC 5280 as SubjectPublicKeyInfo. * * \param key Slot whose content is to be exported. This must * be an occupied key slot. * \param data Buffer where the key data is to be written. * \param data_size Size of the \c data buffer in bytes. * \param data_length On success, the number of bytes * that make up the key data. * * \retval PSA_SUCCESS * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_NOT_PERMITTED * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_export_key(psa_key_slot_t key, uint8_t *data, size_t data_size, size_t *data_length); /** * \brief Export a public key or the public part of a key pair in binary format. * * The output of this function can be passed to psa_import_key() to * create an object that is equivalent to the public key. * * For standard key types, the output format is as follows: * * - For RSA keys (#PSA_KEY_TYPE_RSA_KEYPAIR or #PSA_KEY_TYPE_RSA_PUBLIC_KEY), * is the DER representation of the public key defined by RFC 5280 * as SubjectPublicKeyInfo. * * \param key Slot whose content is to be exported. This must * be an occupied key slot. * \param data Buffer where the key data is to be written. * \param data_size Size of the \c data buffer in bytes. * \param data_length On success, the number of bytes * that make up the key data. * * \retval PSA_SUCCESS * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_INVALID_ARGUMENT * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_export_public_key(psa_key_slot_t key, uint8_t *data, size_t data_size, size_t *data_length); /**@}*/ /** \defgroup policy Key policies * @{ */ /** \brief Encoding of permitted usage on a key. */ typedef uint32_t psa_key_usage_t; /** Whether the key may be exported. * * A public key or the public part of a key pair may always be exported * regardless of the value of this permission flag. * * If a key does not have export permission, implementations shall not * allow the key to be exported in plain form from the cryptoprocessor, * whether through psa_export_key() or through a proprietary interface. * The key may however be exportable in a wrapped form, i.e. in a form * where it is encrypted by another key. */ #define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001) /** Whether the key may be used to encrypt a message. * * For a key pair, this concerns the public key. */ #define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100) /** Whether the key may be used to decrypt a message. * * For a key pair, this concerns the private key. */ #define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200) /** Whether the key may be used to sign a message. * * For a key pair, this concerns the private key. */ #define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400) /** Whether the key may be used to verify a message signature. * * For a key pair, this concerns the public key. */ #define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800) /** The type of the key policy data structure. * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_key_policy_s psa_key_policy_t; /** \brief Initialize a key policy structure to a default that forbids all * usage of the key. */ void psa_key_policy_init(psa_key_policy_t *policy); /** \brief Set the standard fields of a policy structure. * * Note that this function does not make any consistency check of the * parameters. The values are only checked when applying the policy to * a key slot with psa_set_key_policy(). */ void psa_key_policy_set_usage(psa_key_policy_t *policy, psa_key_usage_t usage, psa_algorithm_t alg); psa_key_usage_t psa_key_policy_get_usage(psa_key_policy_t *policy); psa_algorithm_t psa_key_policy_get_algorithm(psa_key_policy_t *policy); /** \brief Set the usage policy on a key slot. * * This function must be called on an empty key slot, before importing, * generating or creating a key in the slot. Changing the policy of an * existing key is not permitted. * * Implementations may set restrictions on supported key policies * depending on the key type and the key slot. */ psa_status_t psa_set_key_policy(psa_key_slot_t key, const psa_key_policy_t *policy); /** \brief Get the usage policy for a key slot. */ psa_status_t psa_get_key_policy(psa_key_slot_t key, psa_key_policy_t *policy); /**@}*/ /** \defgroup persistence Key lifetime * @{ */ /** Encoding of key lifetimes. */ typedef uint32_t psa_key_lifetime_t; /** A volatile key slot retains its content as long as the application is * running. It is guaranteed to be erased on a power reset. */ #define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000) /** A persistent key slot retains its content as long as it is not explicitly * destroyed. */ #define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001) /** A write-once key slot may not be modified once a key has been set. * It will retain its content as long as the device remains operational. */ #define PSA_KEY_LIFETIME_WRITE_ONCE ((psa_key_lifetime_t)0x7fffffff) /** \brief Retrieve the lifetime of a key slot. * * The assignment of lifetimes to slots is implementation-dependent. */ psa_status_t psa_get_key_lifetime(psa_key_slot_t key, psa_key_lifetime_t *lifetime); /** \brief Change the lifetime of a key slot. * * Whether the lifetime of a key slot can be changed at all, and if so * whether the lifetime of an occupied key slot can be changed, is * implementation-dependent. */ psa_status_t psa_set_key_lifetime(psa_key_slot_t key, const psa_key_lifetime_t *lifetime); /**@}*/ /** \defgroup hash Message digests * @{ */ /** The type of the state data structure for multipart hash operations. * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_hash_operation_s psa_hash_operation_t; /** The size of the output of psa_hash_finish(), in bytes. * * This is also the hash size that psa_hash_verify() expects. * * \param alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(alg) is true). * * \return The hash size for the specified hash algorithm. * If the hash algorithm is not recognized, return 0. * An implementation may return either 0 or the correct size * for a hash algorithm that it recognizes, but does not support. */ #define PSA_HASH_FINAL_SIZE(alg) \ ( \ (alg) == PSA_ALG_MD2 ? 16 : \ (alg) == PSA_ALG_MD4 ? 16 : \ (alg) == PSA_ALG_MD5 ? 16 : \ (alg) == PSA_ALG_RIPEMD160 ? 20 : \ (alg) == PSA_ALG_SHA_1 ? 20 : \ (alg) == PSA_ALG_SHA_224 ? 28 : \ (alg) == PSA_ALG_SHA_256 ? 32 : \ (alg) == PSA_ALG_SHA_384 ? 48 : \ (alg) == PSA_ALG_SHA_512 ? 64 : \ (alg) == PSA_ALG_SHA_512_224 ? 28 : \ (alg) == PSA_ALG_SHA_512_256 ? 32 : \ (alg) == PSA_ALG_SHA3_224 ? 28 : \ (alg) == PSA_ALG_SHA3_256 ? 32 : \ (alg) == PSA_ALG_SHA3_384 ? 48 : \ (alg) == PSA_ALG_SHA3_512 ? 64 : \ 0) /** Start a multipart hash operation. * * The sequence of operations to calculate a hash (message digest) * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_hash_start() to specify the algorithm. * -# Call psa_hash_update() zero, one or more times, passing a fragment * of the message each time. The hash that is calculated is the hash * of the concatenation of these messages in order. * -# To calculate the hash, call psa_hash_finish(). * To compare the hash with an expected value, call psa_hash_verify(). * * The application may call psa_hash_abort() at any time after the operation * has been initialized with psa_hash_start(). * * After a successful call to psa_hash_start(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_hash_update(). * - A call to psa_hash_finish(), psa_hash_verify() or psa_hash_abort(). * * \param operation * \param alg The hash algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_HASH(alg) is true). * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a hash algorithm. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_start(psa_hash_operation_t *operation, psa_algorithm_t alg); /** Add a message fragment to a multipart hash operation. * * The application must call psa_hash_start() before calling this function. * * If this function returns an error status, the operation becomes inactive. * * \param operation Active hash operation. * \param input Buffer containing the message fragment to hash. * \param input_length Size of the \c input buffer in bytes. * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_BAD_STATE * The operation state is not valid (not started, or already completed). * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_update(psa_hash_operation_t *operation, const uint8_t *input, size_t input_length); /** Finish the calculation of the hash of a message. * * The application must call psa_hash_start() before calling this function. * This function calculates the hash of the message formed by concatenating * the inputs passed to preceding calls to psa_hash_update(). * * When this function returns, the operation becomes inactive. * * \warning Applications should not call this function if they expect * a specific value for the hash. Call psa_hash_verify() instead. * Beware that comparing integrity or authenticity data such as * hash values with a function such as \c memcmp is risky * because the time taken by the comparison may leak information * about the hashed data which could allow an attacker to guess * a valid hash and thereby bypass security controls. * * \param operation Active hash operation. * \param hash Buffer where the hash is to be written. * \param hash_size Size of the \c hash buffer in bytes. * \param hash_length On success, the number of bytes * that make up the hash value. This is always * #PSA_HASH_FINAL_SIZE(alg) where \c alg is the * hash algorithm that is calculated. * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_BAD_STATE * The operation state is not valid (not started, or already completed). * \retval PSA_ERROR_BUFFER_TOO_SMALL * The size of the \c hash buffer is too small. You can determine a * sufficient buffer size by calling #PSA_HASH_FINAL_SIZE(alg) * where \c alg is the hash algorithm that is calculated. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_finish(psa_hash_operation_t *operation, uint8_t *hash, size_t hash_size, size_t *hash_length); /** Finish the calculation of the hash of a message and compare it with * an expected value. * * The application must call psa_hash_start() before calling this function. * This function calculates the hash of the message formed by concatenating * the inputs passed to preceding calls to psa_hash_update(). It then * compares the calculated hash with the expected hash passed as a * parameter to this function. * * When this function returns, the operation becomes inactive. * * \note Implementations shall make the best effort to ensure that the * comparison between the actual hash and the expected hash is performed * in constant time. * * \param operation Active hash operation. * \param hash Buffer containing the expected hash value. * \param hash_length Size of the \c hash buffer in bytes. * * \retval PSA_SUCCESS * The expected hash is identical to the actual hash of the message. * \retval PSA_ERROR_INVALID_SIGNATURE * The hash of the message was calculated successfully, but it * differs from the expected hash. * \retval PSA_ERROR_BAD_STATE * The operation state is not valid (not started, or already completed). * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_verify(psa_hash_operation_t *operation, const uint8_t *hash, size_t hash_length); /** Abort a hash operation. * * This function may be called at any time after psa_hash_start(). * Aborting an operation frees all associated resources except for the * \c operation structure itself. * * Implementation should strive to be robust and handle inactive hash * operations safely (do nothing and return #PSA_ERROR_BAD_STATE). However, * application writers should beware that uninitialized memory may happen * to be indistinguishable from an active hash operation, and the behavior * of psa_hash_abort() is undefined in this case. * * \param operation Active hash operation. * * \retval PSA_SUCCESS * \retval PSA_ERROR_BAD_STATE * \c operation is not an active hash operation. * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_abort(psa_hash_operation_t *operation); /**@}*/ /** \defgroup MAC Message authentication codes * @{ */ /** The type of the state data structure for multipart MAC operations. * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_mac_operation_s psa_mac_operation_t; /** The size of the output of psa_mac_finish(), in bytes. * * This is also the MAC size that psa_mac_verify() expects. * * \param alg A MAC algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_MAC(alg) is true). * * \return The MAC size for the specified algorithm. * If the MAC algorithm is not recognized, return 0. * An implementation may return either 0 or the correct size * for a MAC algorithm that it recognizes, but does not support. */ #define PSA_MAC_FINAL_SIZE(key_type, key_bits, alg) \ (PSA_ALG_IS_HMAC(alg) ? PSA_HASH_FINAL_SIZE(PSA_ALG_HMAC_HASH(alg)) : \ PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) ? PSA_BLOCK_CIPHER_BLOCK_SIZE(key_type) : \ 0) /** Start a multipart MAC operation. * * The sequence of operations to calculate a MAC (message authentication code) * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_mac_start() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call psa_mac_update() zero, one or more times, passing a fragment * of the message each time. The MAC that is calculated is the MAC * of the concatenation of these messages in order. * -# To calculate the MAC, call psa_mac_finish(). * To compare the MAC with an expected value, call psa_mac_verify(). * * The application may call psa_mac_abort() at any time after the operation * has been initialized with psa_mac_start(). * * After a successful call to psa_mac_start(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_mac_update(). * - A call to psa_mac_finish(), psa_mac_verify() or psa_mac_abort(). * * \param operation * \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_MAC(alg) is true). * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_NOT_PERMITTED * \retval PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg. * \retval PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a MAC algorithm. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_mac_start(psa_mac_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg); psa_status_t psa_mac_update(psa_mac_operation_t *operation, const uint8_t *input, size_t input_length); psa_status_t psa_mac_finish(psa_mac_operation_t *operation, uint8_t *mac, size_t mac_size, size_t *mac_length); psa_status_t psa_mac_verify(psa_mac_operation_t *operation, const uint8_t *mac, size_t mac_length); psa_status_t psa_mac_abort(psa_mac_operation_t *operation); /**@}*/ /** \defgroup cipher Symmetric ciphers * @{ */ /** The type of the state data structure for multipart cipher operations. * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_cipher_operation_s psa_cipher_operation_t; /** Set the key for a multipart symmetric encryption operation. * * The sequence of operations to encrypt a message with a symmetric cipher * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_encrypt_setup() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call either psa_encrypt_generate_iv() or psa_encrypt_set_iv() to * generate or set the IV (initialization vector). You should use * psa_encrypt_generate_iv() unless the protocol you are implementing * requires a specific IV value. * -# Call psa_cipher_update() zero, one or more times, passing a fragment * of the message each time. * -# Call psa_cipher_finish(). * * The application may call psa_cipher_abort() at any time after the operation * has been initialized with psa_encrypt_setup(). * * After a successful call to psa_encrypt_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_encrypt_generate_iv(), psa_encrypt_set_iv() * or psa_cipher_update(). * - A call to psa_cipher_finish() or psa_cipher_abort(). * * \param operation * \param alg The cipher algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_CIPHER(alg) is true). * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_NOT_PERMITTED * \retval PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg. * \retval PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a cipher algorithm. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_encrypt_setup(psa_cipher_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg); /** Set the key for a multipart symmetric decryption operation. * * The sequence of operations to decrypt a message with a symmetric cipher * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_decrypt_setup() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call psa_cipher_update() with the IV (initialization vector) for the * decryption. If the IV is prepended to the ciphertext, you can call * psa_cipher_update() on a buffer containing the IV followed by the * beginning of the message. * -# Call psa_cipher_update() zero, one or more times, passing a fragment * of the message each time. * -# Call psa_cipher_finish(). * * The application may call psa_cipher_abort() at any time after the operation * has been initialized with psa_encrypt_setup(). * * After a successful call to psa_decrypt_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_cipher_update(). * - A call to psa_cipher_finish() or psa_cipher_abort(). * * \param operation * \param alg The cipher algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_CIPHER(alg) is true). * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_NOT_PERMITTED * \retval PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg. * \retval PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a cipher algorithm. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_decrypt_setup(psa_cipher_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg); psa_status_t psa_encrypt_generate_iv(psa_cipher_operation_t *operation, unsigned char *iv, size_t iv_size, size_t *iv_length); psa_status_t psa_encrypt_set_iv(psa_cipher_operation_t *operation, const unsigned char *iv, size_t iv_length); psa_status_t psa_cipher_update(psa_cipher_operation_t *operation, const uint8_t *input, size_t input_length); psa_status_t psa_cipher_finish(psa_cipher_operation_t *operation, uint8_t *mac, size_t mac_size, size_t *mac_length); psa_status_t psa_cipher_abort(psa_cipher_operation_t *operation); /**@}*/ /** \defgroup aead Authenticated encryption with associated data (AEAD) * @{ */ /** The type of the state data structure for multipart AEAD operations. * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_aead_operation_s psa_aead_operation_t; /** Set the key for a multipart authenticated encryption operation. * * The sequence of operations to authenticate-and-encrypt a message * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_aead_encrypt_setup() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call either psa_aead_generate_iv() or psa_aead_set_iv() to * generate or set the IV (initialization vector). You should use * psa_encrypt_generate_iv() unless the protocol you are implementing * requires a specific IV value. * -# Call psa_aead_update_ad() to pass the associated data that is * to be authenticated but not encrypted. You may omit this step if * there is no associated data. * -# Call psa_aead_update() zero, one or more times, passing a fragment * of the data to encrypt each time. * -# Call psa_aead_finish(). * * The application may call psa_aead_abort() at any time after the operation * has been initialized with psa_aead_encrypt_setup(). * * After a successful call to psa_aead_encrypt_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_aead_generate_iv(), psa_aead_set_iv(), * psa_aead_update_ad() or psa_aead_update(). * - A call to psa_aead_finish() or psa_aead_abort(). * * \param operation * \param alg The AEAD algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_AEAD(alg) is true). * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_NOT_PERMITTED * \retval PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg. * \retval PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not an AEAD algorithm. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_aead_encrypt_setup(psa_aead_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg); /** Set the key for a multipart authenticated decryption operation. * * The sequence of operations to authenticated and decrypt a message * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_aead_decrypt_setup() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call psa_aead_set_iv() to pass the initialization vector (IV) * for the authenticated decryption. * -# Call psa_aead_update_ad() to pass the associated data that is * to be authenticated but not encrypted. You may omit this step if * there is no associated data. * -# Call psa_aead_update() zero, one or more times, passing a fragment * of the data to decrypt each time. * -# Call psa_aead_finish(). * * The application may call psa_aead_abort() at any time after the operation * has been initialized with psa_aead_decrypt_setup(). * * After a successful call to psa_aead_decrypt_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_aead_update(). * - A call to psa_aead_finish() or psa_aead_abort(). * * \param operation * \param alg The AEAD algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_AEAD(alg) is true). * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_NOT_PERMITTED * \retval PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg. * \retval PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not an AEAD algorithm. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_aead_decrypt_setup(psa_aead_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg); psa_status_t psa_aead_generate_iv(psa_aead_operation_t *operation, unsigned char *iv, size_t iv_size, size_t *iv_length); psa_status_t psa_aead_set_iv(psa_aead_operation_t *operation, const unsigned char *iv, size_t iv_length); psa_status_t psa_aead_update_ad(psa_aead_operation_t *operation, const uint8_t *input, size_t input_length); psa_status_t psa_aead_update(psa_aead_operation_t *operation, const uint8_t *input, size_t input_length); psa_status_t psa_aead_finish(psa_aead_operation_t *operation, uint8_t *tag, size_t tag_size, size_t *tag_length); psa_status_t psa_aead_verify(psa_aead_operation_t *operation, uint8_t *tag, size_t tag_length); psa_status_t psa_aead_abort(psa_aead_operation_t *operation); /**@}*/ /** \defgroup asymmetric Asymmetric cryptography * @{ */ /** * \brief Maximum ECDSA signature size for a given curve bit size * * \param curve_bits Curve size in bits * \return Maximum signature size in bytes * * \note This macro returns a compile-time constant if its argument is one. * * \warning This macro may evaluate its argument multiple times. */ /* * RFC 4492 page 20: * * Ecdsa-Sig-Value ::= SEQUENCE { * r INTEGER, * s INTEGER * } * * Size is at most * 1 (tag) + 1 (len) + 1 (initial 0) + curve_bytes for each of r and s, * twice that + 1 (tag) + 2 (len) for the sequence * (assuming curve_bytes is less than 126 for r and s, * and less than 124 (total len <= 255) for the sequence) */ #define PSA_ECDSA_SIGNATURE_SIZE(curve_bits) \ ( /*T,L of SEQUENCE*/ ((curve_bits) >= 61 * 8 ? 3 : 2) + \ /*T,L of r,s*/ 2 * (((curve_bits) >= 127 * 8 ? 3 : 2) + \ /*V of r,s*/ ((curve_bits) + 8) / 8)) /** Safe signature buffer size for psa_asymmetric_sign(). * * This macro returns a safe buffer size for a signature using a key * of the specified type and size, with the specified algorithm. * Note that the actual size of the signature may be smaller * (some algorithms produce a variable-size signature). * * \warning This function may call its arguments multiple times or * zero times, so you should not pass arguments that contain * side effects. * * \param key_type An asymmetric key type (this may indifferently be a * key pair type or a public key type). * \param key_bits The size of the key in bits. * \param alg The signature algorithm. * * \return If the parameters are valid and supported, return * a buffer size in bytes that guarantees that * psa_asymmetric_sign() will not fail with * #PSA_ERROR_BUFFER_TOO_SMALL. * If the parameters are a valid combination that is not supported * by the implementation, this macro either shall return either a * sensible size or 0. * If the parameters are not valid, the * return value is unspecified. * */ #define PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE(key_type, key_bits, alg) \ (PSA_KEY_TYPE_IS_RSA(key_type) ? ((void)alg, PSA_BITS_TO_BYTES(key_bits)) : \ PSA_KEY_TYPE_IS_ECC(key_type) ? PSA_ECDSA_SIGNATURE_SIZE(key_bits) : \ 0) /** * \brief Sign a hash or short message with a private key. * * \param key Key slot containing an asymmetric key pair. * \param alg A signature algorithm that is compatible with * the type of \c key. * \param hash The message to sign. * \param hash_length Size of the \c hash buffer in bytes. * \param salt A salt or label, if supported by the signature * algorithm. * If the signature algorithm does not support a * salt, pass \c NULL. * If the signature algorithm supports an optional * salt and you do not want to pass a salt, * pass \c NULL. * \param salt_length Size of the \c salt buffer in bytes. * If \c salt is \c NULL, pass 0. * \param signature Buffer where the signature is to be written. * \param signature_size Size of the \c signature buffer in bytes. * \param signature_length On success, the number of bytes * that make up the returned signature value. * This is at most #PSA_HASH_FINAL_SIZE(alg) * (note that it may be less). * * \retval PSA_SUCCESS * \retval PSA_ERROR_BUFFER_TOO_SMALL * The size of the \c signature buffer is too small. You can * determine a sufficient buffer size by calling * #PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE(key_type, key_bits, alg) * where \c key_type and \c key_bits are the type and bit-size * respectively of \c key. * \retval PSA_ERROR_NOT_SUPPORTED * \retval PSA_ERROR_INVALID_ARGUMENT * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED * \retval PSA_ERROR_INSUFFICIENT_ENTROPY */ psa_status_t psa_asymmetric_sign(psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, const uint8_t *salt, size_t salt_length, uint8_t *signature, size_t signature_size, size_t *signature_length); /** * \brief Verify the signature a hash or short message using a public key. * * \param key Key slot containing a public key or an * asymmetric key pair. * \param alg A signature algorithm that is compatible with * the type of \c key. * \param hash The message whose signature is to be verified. * \param hash_length Size of the \c hash buffer in bytes. * \param salt A salt or label, if supported by the signature * algorithm. * If the signature algorithm does not support a * salt, pass \c NULL. * If the signature algorithm supports an optional * salt and you do not want to pass a salt, * pass \c NULL. * \param salt_length Size of the \c salt buffer in bytes. * If \c salt is \c NULL, pass 0. * \param signature Buffer containing the signature to verify. * \param signature_size Size of the \c signature buffer in bytes. * * \retval PSA_SUCCESS * The signature is valid. * \retval PSA_ERROR_INVALID_SIGNATURE * The calculation was perfomed successfully, but the passed * signature is not a valid signature. * \retval PSA_ERROR_NOT_SUPPORTED * \retval PSA_ERROR_INVALID_ARGUMENT * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_asymmetric_verify(psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, const uint8_t *salt, size_t salt_length, uint8_t *signature, size_t signature_size); /**@}*/ #ifdef __cplusplus } #endif /* The file "crypto_struct.h" contains definitions for * implementation-specific structs that are declared above. */ #include "crypto_struct.h" /* The file "crypto_extra.h" contains vendor-specific definitions. This * can include vendor-defined algorithms, extra functions, etc. */ #include "crypto_extra.h" #endif /* PSA_CRYPTO_H */