/** * \file psa/crypto.h * \brief Platform Security Architecture cryptography module */ #ifndef PSA_CRYPTO_H #define PSA_CRYPTO_H #include "crypto_platform.h" #include #ifdef __DOXYGEN_ONLY__ /* This __DOXYGEN_ONLY__ block contains mock definitions for things that * must be defined in the crypto_platform.h header. These mock definitions * are present in this file as a convenience to generate pretty-printed * documentation that includes those definitions. */ /** \defgroup platform Implementation-specific definitions * @{ */ /** \brief Key slot number. * * This type represents key slots. It must be an unsigned integral * type. The choice of type is implementation-dependent. * 0 is not a valid key slot number. The meaning of other values is * implementation dependent. * * At any given point in time, each key slot either contains a * cryptographic object, or is empty. Key slots are persistent: * once set, the cryptographic object remains in the key slot until * explicitly destroyed. */ typedef _unsigned_integral_type_ psa_key_slot_t; /**@}*/ #endif /* __DOXYGEN_ONLY__ */ #ifdef __cplusplus extern "C" { #endif /** \defgroup basic Basic definitions * @{ */ #if defined(PSA_SUCCESS) /* If PSA_SUCCESS is defined, assume that PSA crypto is being used * together with PSA IPC, which also defines the identifier * PSA_SUCCESS. We must not define PSA_SUCCESS ourselves in that case; * the other error code names don't clash. Also define psa_status_t as * an alias for the type used by PSA IPC. This is a temporary hack * until we unify error reporting in PSA IPC and PSA crypo. * * Note that psa_defs.h must be included before this header! */ typedef psa_error_t psa_status_t; #else /* defined(PSA_SUCCESS) */ /** * \brief Function return status. * * This is either #PSA_SUCCESS (which is zero), indicating success, * or a nonzero value indicating that an error occurred. Errors are * encoded as one of the \c PSA_ERROR_xxx values defined here. */ typedef int32_t psa_status_t; /** The action was completed successfully. */ #define PSA_SUCCESS ((psa_status_t)0) #endif /* !defined(PSA_SUCCESS) */ /** The requested operation or a parameter is not supported * by this implementation. * * Implementations should return this error code when an enumeration * parameter such as a key type, algorithm, etc. is not recognized. * If a combination of parameters is recognized and identified as * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */ #define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)1) /** The requested action is denied by a policy. * * Implementations should return this error code when the parameters * are recognized as valid and supported, and a policy explicitly * denies the requested operation. * * If a subset of the parameters of a function call identify a * forbidden operation, and another subset of the parameters are * not valid or not supported, it is unspecified whether the function * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or * #PSA_ERROR_INVALID_ARGUMENT. */ #define PSA_ERROR_NOT_PERMITTED ((psa_status_t)2) /** An output buffer is too small. * * Applications can call the `PSA_xxx_SIZE` macro listed in the function * description to determine a sufficient buffer size. * * Implementations should preferably return this error code only * in cases when performing the operation with a larger output * buffer would succeed. However implementations may return this * error if a function has invalid or unsupported parameters in addition * to the parameters that determine the necessary output buffer size. */ #define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)3) /** A slot is occupied, but must be empty to carry out the * requested action. * * If the slot number is invalid (i.e. the requested action could * not be performed even after erasing the slot's content), * implementations shall return #PSA_ERROR_INVALID_ARGUMENT instead. */ #define PSA_ERROR_OCCUPIED_SLOT ((psa_status_t)4) /** A slot is empty, but must be occupied to carry out the * requested action. * * If the slot number is invalid (i.e. the requested action could * not be performed even after creating appropriate content in the slot), * implementations shall return #PSA_ERROR_INVALID_ARGUMENT instead. */ #define PSA_ERROR_EMPTY_SLOT ((psa_status_t)5) /** The requested action cannot be performed in the current state. * * Multipart operations return this error when one of the * functions is called out of sequence. Refer to the function * descriptions for permitted sequencing of functions. * * Implementations shall not return this error code to indicate * that a key slot is occupied when it needs to be free or vice versa, * but shall return #PSA_ERROR_OCCUPIED_SLOT or #PSA_ERROR_EMPTY_SLOT * as applicable. */ #define PSA_ERROR_BAD_STATE ((psa_status_t)6) /** The parameters passed to the function are invalid. * * Implementations may return this error any time a parameter or * combination of parameters are recognized as invalid. * * Implementations shall not return this error code to indicate * that a key slot is occupied when it needs to be free or vice versa, * but shall return #PSA_ERROR_OCCUPIED_SLOT or #PSA_ERROR_EMPTY_SLOT * as applicable. */ #define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)7) /** There is not enough runtime memory. * * If the action is carried out across multiple security realms, this * error can refer to available memory in any of the security realms. */ #define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)8) /** There is not enough persistent storage. * * Functions that modify the key storage return this error code if * there is insufficient storage space on the host media. In addition, * many functions that do not otherwise access storage may return this * error code if the implementation requires a mandatory log entry for * the requested action and the log storage space is full. */ #define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)9) /** There was a communication failure inside the implementation. * * This can indicate a communication failure between the application * and an external cryptoprocessor or between the cryptoprocessor and * an external volatile or persistent memory. A communication failure * may be transient or permanent depending on the cause. * * \warning If a function returns this error, it is undetermined * whether the requested action has completed or not. Implementations * should return #PSA_SUCCESS on successful completion whenver * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE * if the requested action was completed successfully in an external * cryptoprocessor but there was a breakdown of communication before * the cryptoprocessor could report the status to the application. */ #define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)10) /** There was a storage failure that may have led to data loss. * * This error indicates that some persistent storage is corrupted. * It should not be used for a corruption of volatile memory * (use #PSA_ERROR_TAMPERING_DETECTED), for a communication error * between the cryptoprocessor and its external storage (use * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE). * * Note that a storage failure does not indicate that any data that was * previously read is invalid. However this previously read data may no * longer be readable from storage. * * When a storage failure occurs, it is no longer possible to ensure * the global integrity of the keystore. Depending on the global * integrity guarantees offered by the implementation, access to other * data may or may not fail even if the data is still readable but * its integrity canont be guaranteed. * * Implementations should only use this error code to report a * permanent storage corruption. However application writers should * keep in mind that transient errors while reading the storage may be * reported using this error code. */ #define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)11) /** A hardware failure was detected. * * A hardware failure may be transient or permanent depending on the * cause. */ #define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)12) /** A tampering attempt was detected. * * If an application receives this error code, there is no guarantee * that previously accessed or computed data was correct and remains * confidential. Applications should not perform any security function * and should enter a safe failure state. * * Implementations may return this error code if they detect an invalid * state that cannot happen during normal operation and that indicates * that the implementation's security guarantees no longer hold. Depending * on the implementation architecture and on its security and safety goals, * the implementation may forcibly terminate the application. * * This error code is intended as a last resort when a security breach * is detected and it is unsure whether the keystore data is still * protected. Implementations shall only return this error code * to report an alarm from a tampering detector, to indicate that * the confidentiality of stored data can no longer be guaranteed, * or to indicate that the integrity of previously returned data is now * considered compromised. Implementations shall not use this error code * to indicate a hardware failure that merely makes it impossible to * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE, * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE, * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code * instead). * * This error indicates an attack against the application. Implementations * shall not return this error code as a consequence of the behavior of * the application itself. */ #define PSA_ERROR_TAMPERING_DETECTED ((psa_status_t)13) /** There is not enough entropy to generate random data needed * for the requested action. * * This error indicates a failure of a hardware random generator. * Application writers should note that this error can be returned not * only by functions whose purpose is to generate random data, such * as key, IV or nonce generation, but also by functions that execute * an algorithm with a randomized result, as well as functions that * use randomization of intermediate computations as a countermeasure * to certain attacks. * * Implementations should avoid returning this error after psa_crypto_init() * has succeeded. Implementations should generate sufficient * entropy during initialization and subsequently use a cryptographically * secure pseudorandom generator (PRNG). However implementations may return * this error at any time if a policy requires the PRNG to be reseeded * during normal operation. */ #define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)14) /** The signature, MAC or hash is incorrect. * * Verification functions return this error if the verification * calculations completed successfully, and the value to be verified * was determined to be incorrect. * * If the value to verify has an invalid size, implementations may return * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */ #define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)15) /** The decrypted padding is incorrect. * * \warning In some protocols, when decrypting data, it is essential that * the behavior of the application does not depend on whether the padding * is correct, down to precise timing. Applications should prefer * protocols that use authenticated encryption rather than plain * encryption. If the application must perform a decryption of * unauthenticated data, the application writer should take care not * to reveal whether the padding is invalid. * * Implementations should strive to make valid and invalid padding * as close as possible to indistinguishable to an external observer. * In particular, the timing of a decryption operation should not * depend on the validity of the padding. */ #define PSA_ERROR_INVALID_PADDING ((psa_status_t)16) /** An error occurred that does not correspond to any defined * failure cause. * * Implementations may use this error code if none of the other standard * error codes are applicable. */ #define PSA_ERROR_UNKNOWN_ERROR ((psa_status_t)17) /** * \brief Library initialization. * * Applications must call this function before calling any other * function in this module. * * Applications may call this function more than once. Once a call * succeeds, subsequent calls are guaranteed to succeed. * * \retval PSA_SUCCESS * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED * \retval PSA_ERROR_INSUFFICIENT_ENTROPY */ psa_status_t psa_crypto_init(void); #define PSA_BITS_TO_BYTES(bits) (((bits) + 7) / 8) #define PSA_BYTES_TO_BITS(bytes) ((bytes) * 8) /**@}*/ /** \defgroup crypto_types Key and algorithm types * @{ */ /** \brief Encoding of a key type. */ typedef uint32_t psa_key_type_t; /** An invalid key type value. * * Zero is not the encoding of any key type. */ #define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000) /** Vendor-defined flag * * Key types defined by this standard will never have the * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should * respect the bitwise structure used by standard encodings whenever practical. */ #define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000) #define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7e000000) /** Raw data. * * A "key" of this type cannot be used for any cryptographic operation. * Applications may use this type to store arbitrary data in the keystore. */ #define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x02000000) #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x04000000) #define PSA_KEY_TYPE_CATEGORY_ASYMMETRIC ((psa_key_type_t)0x06000000) #define PSA_KEY_TYPE_PAIR_FLAG ((psa_key_type_t)0x01000000) /** HMAC key. * * The key policy determines which underlying hash algorithm the key can be * used for. * * HMAC keys should generally have the same size as the underlying hash. * This size can be calculated with `PSA_HASH_SIZE(alg)` where * `alg` is the HMAC algorithm or the underlying hash algorithm. */ #define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x02000001) /** Key for an cipher, AEAD or MAC algorithm based on the AES block cipher. * * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or * 32 bytes (AES-256). */ #define PSA_KEY_TYPE_AES ((psa_key_type_t)0x04000001) /** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES). * * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or * 24 bytes (3-key 3DES). * * Note that single DES and 2-key 3DES are weak and strongly * deprecated and should only be used to decrypt legacy data. 3-key 3DES * is weak and deprecated and should only be used in legacy protocols. */ #define PSA_KEY_TYPE_DES ((psa_key_type_t)0x04000002) /** Key for an cipher, AEAD or MAC algorithm based on the * Camellia block cipher. */ #define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x04000003) /** Key for the RC4 stream cipher. * * Note that RC4 is weak and deprecated and should only be used in * legacy protocols. */ #define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x04000004) /** RSA public key. */ #define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x06010000) /** RSA key pair (private and public key). */ #define PSA_KEY_TYPE_RSA_KEYPAIR ((psa_key_type_t)0x07010000) /** DSA public key. */ #define PSA_KEY_TYPE_DSA_PUBLIC_KEY ((psa_key_type_t)0x06020000) /** DSA key pair (private and public key). */ #define PSA_KEY_TYPE_DSA_KEYPAIR ((psa_key_type_t)0x07020000) #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x06030000) #define PSA_KEY_TYPE_ECC_KEYPAIR_BASE ((psa_key_type_t)0x07030000) #define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff) #define PSA_KEY_TYPE_ECC_KEYPAIR(curve) \ (PSA_KEY_TYPE_ECC_KEYPAIR_BASE | (curve)) #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \ (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve)) /** Whether a key type is vendor-defined. */ #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \ (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0) /** Whether a key type is asymmetric: either a key pair or a public key. */ #define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \ (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_ASYMMETRIC) /** Whether a key type is the public part of a key pair. */ #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \ (((type) & (PSA_KEY_TYPE_CATEGORY_MASK | PSA_KEY_TYPE_PAIR_FLAG)) == \ PSA_KEY_TYPE_CATEGORY_ASYMMETRIC) /** Whether a key type is a key pair containing a private part and a public * part. */ #define PSA_KEY_TYPE_IS_KEYPAIR(type) \ (((type) & (PSA_KEY_TYPE_CATEGORY_MASK | PSA_KEY_TYPE_PAIR_FLAG)) == \ (PSA_KEY_TYPE_CATEGORY_ASYMMETRIC | PSA_KEY_TYPE_PAIR_FLAG)) /** Whether a key type is an RSA key pair or public key. */ /** The key pair type corresponding to a public key type. */ #define PSA_KEY_TYPE_KEYPAIR_OF_PUBLIC_KEY(type) \ ((type) | PSA_KEY_TYPE_PAIR_FLAG) /** The public key type corresponding to a key pair type. */ #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) \ ((type) & ~PSA_KEY_TYPE_PAIR_FLAG) #define PSA_KEY_TYPE_IS_RSA(type) \ (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY) /** Whether a key type is an elliptic curve key pair or public key. */ #define PSA_KEY_TYPE_IS_ECC(type) \ ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) & \ ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE) /** The type of PSA elliptic curve identifiers. */ typedef uint16_t psa_ecc_curve_t; /** Extract the curve from an elliptic curve key type. */ #define PSA_KEY_TYPE_GET_CURVE(type) \ ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \ ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \ 0)) /* The encoding of curve identifiers is currently aligned with the * TLS Supported Groups Registry (formerly known as the * TLS EC Named Curve Registry) * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8 * The values are defined by RFC 4492, RFC 7027 and RFC 7919. */ #define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001) #define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002) #define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003) #define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004) #define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005) #define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006) #define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007) #define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008) #define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009) #define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a) #define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b) #define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c) #define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d) #define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e) #define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f) #define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010) #define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011) #define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012) #define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013) #define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014) #define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015) #define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016) #define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017) #define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018) #define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019) #define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a) #define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b) #define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c) #define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d) #define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e) #define PSA_ECC_CURVE_FFDHE_2048 ((psa_ecc_curve_t) 0x0100) #define PSA_ECC_CURVE_FFDHE_3072 ((psa_ecc_curve_t) 0x0101) #define PSA_ECC_CURVE_FFDHE_4096 ((psa_ecc_curve_t) 0x0102) #define PSA_ECC_CURVE_FFDHE_6144 ((psa_ecc_curve_t) 0x0103) #define PSA_ECC_CURVE_FFDHE_8192 ((psa_ecc_curve_t) 0x0104) /** The block size of a block cipher. * * \param type A cipher key type (value of type #psa_key_type_t). * * \return The block size for a block cipher, or 1 for a stream cipher. * The return value is undefined if \c type is not a supported * cipher key type. * * \note It is possible to build stream cipher algorithms on top of a block * cipher, for example CTR mode (#PSA_ALG_CTR). * This macro only takes the key type into account, so it cannot be * used to determine the size of the data that #psa_cipher_update() * might buffer for future processing in general. * * \note This macro returns a compile-time constant if its argument is one. * * \warning This macro may evaluate its argument multiple times. */ #define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \ ( \ (type) == PSA_KEY_TYPE_AES ? 16 : \ (type) == PSA_KEY_TYPE_DES ? 8 : \ (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \ (type) == PSA_KEY_TYPE_ARC4 ? 1 : \ 0) /** \brief Encoding of a cryptographic algorithm. * * For algorithms that can be applied to multiple key types, this type * does not encode the key type. For example, for symmetric ciphers * based on a block cipher, #psa_algorithm_t encodes the block cipher * mode and the padding mode while the block cipher itself is encoded * via #psa_key_type_t. */ typedef uint32_t psa_algorithm_t; #define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000) #define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000) #define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000) #define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000) #define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000) #define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000) #define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000) #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000) #define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x22000000) #define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x30000000) #define PSA_ALG_IS_VENDOR_DEFINED(alg) \ (((alg) & PSA_ALG_VENDOR_FLAG) != 0) /** Whether the specified algorithm is a hash algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \c alg is a hash algorithm, 0 otherwise. * This macro may return either 0 or 1 if \c alg is not a valid * algorithm identifier. */ #define PSA_ALG_IS_HASH(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH) #define PSA_ALG_IS_MAC(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC) #define PSA_ALG_IS_CIPHER(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER) #define PSA_ALG_IS_AEAD(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD) #define PSA_ALG_IS_SIGN(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN) #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION) #define PSA_ALG_IS_KEY_AGREEMENT(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT) #define PSA_ALG_IS_KEY_DERIVATION(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION) #define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff) #define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001) #define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002) #define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003) #define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004) #define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005) #define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008) #define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009) #define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a) #define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b) #define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c) #define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d) #define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010) #define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011) #define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012) #define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013) #define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000) #define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000) /** Macro to build an HMAC algorithm. * * For example, `PSA_ALG_HMAC(PSA_ALG_SHA256)` is HMAC-SHA-256. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(alg) is true). * * \return The corresponding HMAC algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_HMAC(hash_alg) \ (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_HMAC_HASH(hmac_alg) \ (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_IS_HMAC(alg) \ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ PSA_ALG_HMAC_BASE) #define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000) #define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001) #define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002) #define PSA_ALG_GMAC ((psa_algorithm_t)0x02c00003) #define PSA_ALG_IS_CIPHER_MAC(alg) \ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ PSA_ALG_CIPHER_MAC_BASE) #define PSA_ALG_CIPHER_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000) #define PSA_ALG_BLOCK_CIPHER_BASE ((psa_algorithm_t)0x04000000) #define PSA_ALG_BLOCK_CIPHER_MODE_MASK ((psa_algorithm_t)0x000000ff) #define PSA_ALG_BLOCK_CIPHER_PADDING_MASK ((psa_algorithm_t)0x003f0000) #define PSA_ALG_BLOCK_CIPHER_PAD_NONE ((psa_algorithm_t)0x00000000) #define PSA_ALG_BLOCK_CIPHER_PAD_PKCS7 ((psa_algorithm_t)0x00010000) #define PSA_ALG_IS_BLOCK_CIPHER(alg) \ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_SUBCATEGORY_MASK)) == \ PSA_ALG_BLOCK_CIPHER_BASE) #define PSA_ALG_CBC_BASE ((psa_algorithm_t)0x04000001) #define PSA_ALG_CFB_BASE ((psa_algorithm_t)0x04000002) #define PSA_ALG_OFB_BASE ((psa_algorithm_t)0x04000003) #define PSA_ALG_XTS_BASE ((psa_algorithm_t)0x04000004) #define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800000) #define PSA_ALG_CTR ((psa_algorithm_t)0x04800001) #define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800002) #define PSA_ALG_IS_STREAM_CIPHER(alg) \ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_SUBCATEGORY_MASK)) == \ PSA_ALG_STREAM_CIPHER) #define PSA_ALG_CCM ((psa_algorithm_t)0x06000001) #define PSA_ALG_GCM ((psa_algorithm_t)0x06000002) #define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000) /** RSA PKCS#1 v1.5 signature with hashing. * * This is the signature scheme defined by RFC 8017 * (PKCS#1: RSA Cryptography Specifications) under the name * RSASSA-PKCS1-v1_5. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(alg) is true). * * \return The corresponding RSA PKCS#1 v1.5 signature algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \ (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) /** Raw PKCS#1 v1.5 signature. * * The input to this algorithm is the DigestInfo structure used by * RFC 8017 (PKCS#1: RSA Cryptography Specifications), §9.2 * steps 3–6. */ #define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE #define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE) #define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000) /** RSA PSS signature with hashing. * * This is the signature scheme defined by RFC 8017 * (PKCS#1: RSA Cryptography Specifications) under the name * RSASSA-PSS, with the message generation function MGF1. The specified * hash algorithm is used to hash the input message, to create the * salted hash, and for the mask generation. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(alg) is true). * * \return The corresponding RSA PSS signature algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_RSA_PSS(hash_alg) \ (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_IS_RSA_PSS(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE) #define PSA_ALG_DSA_BASE ((psa_algorithm_t)0x10040000) /** DSA signature with hashing. * * This is the signature scheme defined by FIPS 186-4, * with a random per-message secret number (*k*). * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(alg) is true). * * \return The corresponding DSA signature algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_DSA(hash_alg) \ (PSA_ALG_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_DETERMINISTIC_DSA_BASE ((psa_algorithm_t)0x10050000) #define PSA_ALG_DSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000) #define PSA_ALG_DETERMINISTIC_DSA(hash_alg) \ (PSA_ALG_DETERMINISTIC_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_IS_DSA(alg) \ (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \ PSA_ALG_DSA_BASE) #define PSA_ALG_DSA_IS_DETERMINISTIC(alg) \ (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0) #define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000) /** ECDSA signature with hashing. * * This is the ECDSA signature scheme defined by ANSI X9.62, * with a random per-message secret number (*k*). * * The representation of the signature as a byte string consists of * the concatentation of the signature values *r* and *s*. Each of * *r* and *s* is encoded as an *N*-octet string, where *N* is the length * of the base point of the curve in octets. Each value is represented * in big-endian order (most significant octet first). * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(alg) is true). * * \return The corresponding ECDSA signature algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_ECDSA(hash_alg) \ (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) /** ECDSA signature without hashing. * * This is the same signature scheme as #PSA_ALG_ECDSA(), but * without specifying a hash algorithm. This algorithm may only be * used to sign or verify a sequence of bytes that should be an * already-calculated hash. Note that the input is padded with * zeros on the left or truncated on the left as required to fit * the curve size. */ #define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE #define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000) /** Deterministic ECDSA signature with hashing. * * This is the deterministic ECDSA signature scheme defined by RFC 6979. * * The representation of a signature is the same as with #PSA_ALG_ECDSA(). * * Note that when this algorithm is used for verification, signatures * made with randomized ECDSA (#PSA_ALG_ECDSA(\c hash_alg)) with the * same private key are accepted. In other words, * #PSA_ALG_DETERMINISTIC_ECDSA(\c hash_alg) differs from * #PSA_ALG_ECDSA(\c hash_alg) only for signature, not for verification. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(alg) is true). * * \return The corresponding deterministic ECDSA signature * algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \ (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_IS_ECDSA(alg) \ (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \ PSA_ALG_ECDSA_BASE) #define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \ (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0) /** Get the hash used by a hash-and-sign signature algorithm. * * A hash-and-sign algorithm is a signature algorithm which is * composed of two phases: first a hashing phase which does not use * the key and produces a hash of the input message, then a signing * phase which only uses the hash and the key and not the message * itself. * * \param alg A signature algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_SIGN(alg) is true). * * \return The underlying hash algorithm if \p alg is a hash-and-sign * algorithm. * \return 0 if \p alg is a signature algorithm that does not * follow the hash-and-sign structure. * \return Unspecified if \p alg is not a signature algorithm or * if it is not supported by the implementation. */ #define PSA_ALG_SIGN_GET_HASH(alg) \ (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \ PSA_ALG_IS_DSA(alg) || PSA_ALG_IS_ECDSA(alg) ? \ ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \ 0) #define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000) #define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000) #define PSA_ALG_RSA_OAEP(hash_alg) \ (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_IS_RSA_OAEP(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE) /**@}*/ /** \defgroup key_management Key management * @{ */ /** * \brief Import a key in binary format. * * This function supports any output from psa_export_key(). Refer to the * documentation of psa_export_key() for the format for each key type. * * \param key Slot where the key will be stored. This must be a * valid slot for a key of the chosen type. It must * be unoccupied. * \param type Key type (a \c PSA_KEY_TYPE_XXX value). * \param data Buffer containing the key data. * \param data_length Size of the \c data buffer in bytes. * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_NOT_SUPPORTED * The key type or key size is not supported, either by the * implementation in general or in this particular slot. * \retval PSA_ERROR_INVALID_ARGUMENT * The key slot is invalid, * or the key data is not correctly formatted. * \retval PSA_ERROR_OCCUPIED_SLOT * There is already a key in the specified slot. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_INSUFFICIENT_STORAGE * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_import_key(psa_key_slot_t key, psa_key_type_t type, const uint8_t *data, size_t data_length); /** * \brief Destroy a key and restore the slot to its default state. * * This function destroys the content of the key slot from both volatile * memory and, if applicable, non-volatile storage. Implementations shall * make a best effort to ensure that any previous content of the slot is * unrecoverable. * * This function also erases any metadata such as policies. It returns the * specified slot to its default state. * * \param key The key slot to erase. * * \retval PSA_SUCCESS * The slot's content, if any, has been erased. * \retval PSA_ERROR_NOT_PERMITTED * The slot holds content and cannot be erased because it is * read-only, either due to a policy or due to physical restrictions. * \retval PSA_ERROR_INVALID_ARGUMENT * The specified slot number does not designate a valid slot. * \retval PSA_ERROR_COMMUNICATION_FAILURE * There was an failure in communication with the cryptoprocessor. * The key material may still be present in the cryptoprocessor. * \retval PSA_ERROR_STORAGE_FAILURE * The storage is corrupted. Implementations shall make a best effort * to erase key material even in this stage, however applications * should be aware that it may be impossible to guarantee that the * key material is not recoverable in such cases. * \retval PSA_ERROR_TAMPERING_DETECTED * An unexpected condition which is not a storage corruption or * a communication failure occurred. The cryptoprocessor may have * been compromised. */ psa_status_t psa_destroy_key(psa_key_slot_t key); /** * \brief Get basic metadata about a key. * * \param key Slot whose content is queried. This must * be an occupied key slot. * \param type On success, the key type (a \c PSA_KEY_TYPE_XXX value). * This may be a null pointer, in which case the key type * is not written. * \param bits On success, the key size in bits. * This may be a null pointer, in which case the key size * is not written. * * \retval PSA_SUCCESS * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_get_key_information(psa_key_slot_t key, psa_key_type_t *type, size_t *bits); /** * \brief Export a key in binary format. * * The output of this function can be passed to psa_import_key() to * create an equivalent object. * * If a key is created with psa_import_key() and then exported with * this function, it is not guaranteed that the resulting data is * identical: the implementation may choose a different representation * of the same key if the format permits it. * * For standard key types, the output format is as follows: * * - For symmetric keys (including MAC keys), the format is the * raw bytes of the key. * - For DES, the key data consists of 8 bytes. The parity bits must be * correct. * - For Triple-DES, the format is the concatenation of the * two or three DES keys. * - For RSA key pairs (#PSA_KEY_TYPE_RSA_KEYPAIR), the format * is the non-encrypted DER representation defined by PKCS\#8 (RFC 5208) * as PrivateKeyInfo. * - For RSA public keys (#PSA_KEY_TYPE_RSA_PUBLIC_KEY), the format * is the DER representation defined by RFC 5280 as SubjectPublicKeyInfo. * * \param key Slot whose content is to be exported. This must * be an occupied key slot. * \param data Buffer where the key data is to be written. * \param data_size Size of the \c data buffer in bytes. * \param data_length On success, the number of bytes * that make up the key data. * * \retval PSA_SUCCESS * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_NOT_PERMITTED * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_export_key(psa_key_slot_t key, uint8_t *data, size_t data_size, size_t *data_length); /** * \brief Export a public key or the public part of a key pair in binary format. * * The output of this function can be passed to psa_import_key() to * create an object that is equivalent to the public key. * * For standard key types, the output format is as follows: * * - For RSA keys (#PSA_KEY_TYPE_RSA_KEYPAIR or #PSA_KEY_TYPE_RSA_PUBLIC_KEY), * the format is the DER representation of the public key defined by RFC 5280 * as SubjectPublicKeyInfo. * * \param key Slot whose content is to be exported. This must * be an occupied key slot. * \param data Buffer where the key data is to be written. * \param data_size Size of the \c data buffer in bytes. * \param data_length On success, the number of bytes * that make up the key data. * * \retval PSA_SUCCESS * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_INVALID_ARGUMENT * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_export_public_key(psa_key_slot_t key, uint8_t *data, size_t data_size, size_t *data_length); /**@}*/ /** \defgroup policy Key policies * @{ */ /** \brief Encoding of permitted usage on a key. */ typedef uint32_t psa_key_usage_t; /** Whether the key may be exported. * * A public key or the public part of a key pair may always be exported * regardless of the value of this permission flag. * * If a key does not have export permission, implementations shall not * allow the key to be exported in plain form from the cryptoprocessor, * whether through psa_export_key() or through a proprietary interface. * The key may however be exportable in a wrapped form, i.e. in a form * where it is encrypted by another key. */ #define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001) /** Whether the key may be used to encrypt a message. * * For a key pair, this concerns the public key. */ #define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100) /** Whether the key may be used to decrypt a message. * * For a key pair, this concerns the private key. */ #define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200) /** Whether the key may be used to sign a message. * * For a key pair, this concerns the private key. */ #define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400) /** Whether the key may be used to verify a message signature. * * For a key pair, this concerns the public key. */ #define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800) /** The type of the key policy data structure. * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_key_policy_s psa_key_policy_t; /** \brief Initialize a key policy structure to a default that forbids all * usage of the key. */ void psa_key_policy_init(psa_key_policy_t *policy); /** \brief Set the standard fields of a policy structure. * * Note that this function does not make any consistency check of the * parameters. The values are only checked when applying the policy to * a key slot with psa_set_key_policy(). */ void psa_key_policy_set_usage(psa_key_policy_t *policy, psa_key_usage_t usage, psa_algorithm_t alg); psa_key_usage_t psa_key_policy_get_usage(psa_key_policy_t *policy); psa_algorithm_t psa_key_policy_get_algorithm(psa_key_policy_t *policy); /** \brief Set the usage policy on a key slot. * * This function must be called on an empty key slot, before importing, * generating or creating a key in the slot. Changing the policy of an * existing key is not permitted. * * Implementations may set restrictions on supported key policies * depending on the key type and the key slot. */ psa_status_t psa_set_key_policy(psa_key_slot_t key, const psa_key_policy_t *policy); /** \brief Get the usage policy for a key slot. */ psa_status_t psa_get_key_policy(psa_key_slot_t key, psa_key_policy_t *policy); /**@}*/ /** \defgroup persistence Key lifetime * @{ */ /** Encoding of key lifetimes. */ typedef uint32_t psa_key_lifetime_t; /** A volatile key slot retains its content as long as the application is * running. It is guaranteed to be erased on a power reset. */ #define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000) /** A persistent key slot retains its content as long as it is not explicitly * destroyed. */ #define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001) /** A write-once key slot may not be modified once a key has been set. * It will retain its content as long as the device remains operational. */ #define PSA_KEY_LIFETIME_WRITE_ONCE ((psa_key_lifetime_t)0x7fffffff) /** \brief Retrieve the lifetime of a key slot. * * The assignment of lifetimes to slots is implementation-dependent. * * \param key Slot to query. * \param lifetime On success, the lifetime value. * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_INVALID_ARGUMENT * The key slot is invalid. * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_get_key_lifetime(psa_key_slot_t key, psa_key_lifetime_t *lifetime); /** \brief Change the lifetime of a key slot. * * Whether the lifetime of a key slot can be changed at all, and if so * whether the lifetime of an occupied key slot can be changed, is * implementation-dependent. * * \param key Slot whose lifetime is to be changed. * \param lifetime The lifetime value to set for the given key slot. * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_INVALID_ARGUMENT * The key slot is invalid, * or the lifetime value is invalid. * \retval PSA_ERROR_NOT_SUPPORTED * The implementation does not support the specified lifetime value, * at least for the specified key slot. * \retval PSA_ERROR_OCCUPIED_SLOT * The slot contains a key, and the implementation does not support * changing the lifetime of an occupied slot. * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_set_key_lifetime(psa_key_slot_t key, psa_key_lifetime_t lifetime); /**@}*/ /** \defgroup hash Message digests * @{ */ /** The type of the state data structure for multipart hash operations. * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_hash_operation_s psa_hash_operation_t; /** The size of the output of psa_hash_finish(), in bytes. * * This is also the hash size that psa_hash_verify() expects. * * \param alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(alg) is true), or an HMAC algorithm * (`PSA_ALG_HMAC(hash_alg)` where `hash_alg` is a * hash algorithm). * * \return The hash size for the specified hash algorithm. * If the hash algorithm is not recognized, return 0. * An implementation may return either 0 or the correct size * for a hash algorithm that it recognizes, but does not support. */ #define PSA_HASH_SIZE(alg) \ ( \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_MD2 ? 16 : \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_MD4 ? 16 : \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_MD5 ? 16 : \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_RIPEMD160 ? 20 : \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_SHA_1 ? 20 : \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_SHA_224 ? 28 : \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_SHA_256 ? 32 : \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_SHA_384 ? 48 : \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_SHA_512 ? 64 : \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_SHA_512_224 ? 28 : \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_SHA_512_256 ? 32 : \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_SHA3_224 ? 28 : \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_SHA3_256 ? 32 : \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_SHA3_384 ? 48 : \ PSA_ALG_HMAC_HASH(alg) == PSA_ALG_SHA3_512 ? 64 : \ 0) /** Start a multipart hash operation. * * The sequence of operations to calculate a hash (message digest) * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_hash_start() to specify the algorithm. * -# Call psa_hash_update() zero, one or more times, passing a fragment * of the message each time. The hash that is calculated is the hash * of the concatenation of these messages in order. * -# To calculate the hash, call psa_hash_finish(). * To compare the hash with an expected value, call psa_hash_verify(). * * The application may call psa_hash_abort() at any time after the operation * has been initialized with psa_hash_start(). * * After a successful call to psa_hash_start(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_hash_update(). * - A call to psa_hash_finish(), psa_hash_verify() or psa_hash_abort(). * * \param operation The operation object to use. * \param alg The hash algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_HASH(alg) is true). * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a hash algorithm. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_start(psa_hash_operation_t *operation, psa_algorithm_t alg); /** Add a message fragment to a multipart hash operation. * * The application must call psa_hash_start() before calling this function. * * If this function returns an error status, the operation becomes inactive. * * \param operation Active hash operation. * \param input Buffer containing the message fragment to hash. * \param input_length Size of the \c input buffer in bytes. * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_BAD_STATE * The operation state is not valid (not started, or already completed). * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_update(psa_hash_operation_t *operation, const uint8_t *input, size_t input_length); /** Finish the calculation of the hash of a message. * * The application must call psa_hash_start() before calling this function. * This function calculates the hash of the message formed by concatenating * the inputs passed to preceding calls to psa_hash_update(). * * When this function returns, the operation becomes inactive. * * \warning Applications should not call this function if they expect * a specific value for the hash. Call psa_hash_verify() instead. * Beware that comparing integrity or authenticity data such as * hash values with a function such as \c memcmp is risky * because the time taken by the comparison may leak information * about the hashed data which could allow an attacker to guess * a valid hash and thereby bypass security controls. * * \param operation Active hash operation. * \param hash Buffer where the hash is to be written. * \param hash_size Size of the \c hash buffer in bytes. * \param hash_length On success, the number of bytes * that make up the hash value. This is always * #PSA_HASH_SIZE(alg) where \c alg is the * hash algorithm that is calculated. * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_BAD_STATE * The operation state is not valid (not started, or already completed). * \retval PSA_ERROR_BUFFER_TOO_SMALL * The size of the \c hash buffer is too small. You can determine a * sufficient buffer size by calling #PSA_HASH_SIZE(alg) * where \c alg is the hash algorithm that is calculated. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_finish(psa_hash_operation_t *operation, uint8_t *hash, size_t hash_size, size_t *hash_length); /** Finish the calculation of the hash of a message and compare it with * an expected value. * * The application must call psa_hash_start() before calling this function. * This function calculates the hash of the message formed by concatenating * the inputs passed to preceding calls to psa_hash_update(). It then * compares the calculated hash with the expected hash passed as a * parameter to this function. * * When this function returns, the operation becomes inactive. * * \note Implementations shall make the best effort to ensure that the * comparison between the actual hash and the expected hash is performed * in constant time. * * \param operation Active hash operation. * \param hash Buffer containing the expected hash value. * \param hash_length Size of the \c hash buffer in bytes. * * \retval PSA_SUCCESS * The expected hash is identical to the actual hash of the message. * \retval PSA_ERROR_INVALID_SIGNATURE * The hash of the message was calculated successfully, but it * differs from the expected hash. * \retval PSA_ERROR_BAD_STATE * The operation state is not valid (not started, or already completed). * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_verify(psa_hash_operation_t *operation, const uint8_t *hash, size_t hash_length); /** Abort a hash operation. * * This function may be called at any time after psa_hash_start(). * Aborting an operation frees all associated resources except for the * \c operation structure itself. * * Implementation should strive to be robust and handle inactive hash * operations safely (do nothing and return #PSA_ERROR_BAD_STATE). However, * application writers should beware that uninitialized memory may happen * to be indistinguishable from an active hash operation, and the behavior * of psa_hash_abort() is undefined in this case. * * \param operation Active hash operation. * * \retval PSA_SUCCESS * \retval PSA_ERROR_BAD_STATE * \c operation is not an active hash operation. * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_abort(psa_hash_operation_t *operation); /**@}*/ /** \defgroup MAC Message authentication codes * @{ */ /** The type of the state data structure for multipart MAC operations. * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_mac_operation_s psa_mac_operation_t; /** Start a multipart MAC operation. * * The sequence of operations to calculate a MAC (message authentication code) * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_mac_start() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call psa_mac_update() zero, one or more times, passing a fragment * of the message each time. The MAC that is calculated is the MAC * of the concatenation of these messages in order. * -# To calculate the MAC, call psa_mac_finish(). * To compare the MAC with an expected value, call psa_mac_verify(). * * The application may call psa_mac_abort() at any time after the operation * has been initialized with psa_mac_start(). * * After a successful call to psa_mac_start(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_mac_update(). * - A call to psa_mac_finish(), psa_mac_verify() or psa_mac_abort(). * * \param operation The operation object to use. * \param key Slot containing the key to use for the operation. * \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_MAC(alg) is true). * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_NOT_PERMITTED * \retval PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg. * \retval PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a MAC algorithm. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_mac_start(psa_mac_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg); psa_status_t psa_mac_update(psa_mac_operation_t *operation, const uint8_t *input, size_t input_length); psa_status_t psa_mac_finish(psa_mac_operation_t *operation, uint8_t *mac, size_t mac_size, size_t *mac_length); psa_status_t psa_mac_verify(psa_mac_operation_t *operation, const uint8_t *mac, size_t mac_length); psa_status_t psa_mac_abort(psa_mac_operation_t *operation); /**@}*/ /** \defgroup cipher Symmetric ciphers * @{ */ /** The type of the state data structure for multipart cipher operations. * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_cipher_operation_s psa_cipher_operation_t; /** Set the key for a multipart symmetric encryption operation. * * The sequence of operations to encrypt a message with a symmetric cipher * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_encrypt_setup() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call either psa_encrypt_generate_iv() or psa_encrypt_set_iv() to * generate or set the IV (initialization vector). You should use * psa_encrypt_generate_iv() unless the protocol you are implementing * requires a specific IV value. * -# Call psa_cipher_update() zero, one or more times, passing a fragment * of the message each time. * -# Call psa_cipher_finish(). * * The application may call psa_cipher_abort() at any time after the operation * has been initialized with psa_encrypt_setup(). * * After a successful call to psa_encrypt_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_encrypt_generate_iv(), psa_encrypt_set_iv() * or psa_cipher_update(). * - A call to psa_cipher_finish() or psa_cipher_abort(). * * \param operation The operation object to use. * \param key Slot containing the key to use for the operation. * \param alg The cipher algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_CIPHER(alg) is true). * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_NOT_PERMITTED * \retval PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg. * \retval PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a cipher algorithm. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_encrypt_setup(psa_cipher_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg); /** Set the key for a multipart symmetric decryption operation. * * The sequence of operations to decrypt a message with a symmetric cipher * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_decrypt_setup() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call psa_cipher_update() with the IV (initialization vector) for the * decryption. If the IV is prepended to the ciphertext, you can call * psa_cipher_update() on a buffer containing the IV followed by the * beginning of the message. * -# Call psa_cipher_update() zero, one or more times, passing a fragment * of the message each time. * -# Call psa_cipher_finish(). * * The application may call psa_cipher_abort() at any time after the operation * has been initialized with psa_encrypt_setup(). * * After a successful call to psa_decrypt_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_cipher_update(). * - A call to psa_cipher_finish() or psa_cipher_abort(). * * \param operation The operation object to use. * \param key Slot containing the key to use for the operation. * \param alg The cipher algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_CIPHER(alg) is true). * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_NOT_PERMITTED * \retval PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg. * \retval PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a cipher algorithm. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_decrypt_setup(psa_cipher_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg); psa_status_t psa_encrypt_generate_iv(psa_cipher_operation_t *operation, unsigned char *iv, size_t iv_size, size_t *iv_length); psa_status_t psa_encrypt_set_iv(psa_cipher_operation_t *operation, const unsigned char *iv, size_t iv_length); psa_status_t psa_cipher_update(psa_cipher_operation_t *operation, const uint8_t *input, size_t input_length, unsigned char *output, size_t output_size, size_t *output_length); psa_status_t psa_cipher_finish(psa_cipher_operation_t *operation, uint8_t *output, size_t output_size, size_t *output_length); psa_status_t psa_cipher_abort(psa_cipher_operation_t *operation); /**@}*/ /** \defgroup aead Authenticated encryption with associated data (AEAD) * @{ */ /** The tag size for an AEAD algorithm, in bytes. * * \param alg An AEAD algorithm * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_AEAD(alg) is true). * * \return The tag size for the specified algorithm. * If the AEAD algorithm does not have an identified * tag that can be distinguished from the rest of * the ciphertext, return 0. * If the AEAD algorithm is not recognized, return 0. * An implementation may return either 0 or a * correct size for an AEAD algorithm that it * recognizes, but does not support. */ #define PSA_AEAD_TAG_SIZE(alg) \ ((alg) == PSA_ALG_GCM ? 16 : \ (alg) == PSA_ALG_CCM ? 16 : \ 0) /** Process an authenticated encryption operation. * * \param key Slot containing the key to use. * \param alg The AEAD algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_AEAD(alg) is true). * \param nonce Nonce or IV to use. * \param nonce_length Size of the \p nonce buffer in bytes. * \param additional_data Additional data that will be authenticated * but not encrypted. * \param additional_data_length Size of \p additional_data in bytes. * \param plaintext Data that will be authenticated and * encrypted. * \param plaintext_length Size of \p plaintext in bytes. * \param ciphertext Output buffer for the authenticated and * encrypted data. The additional data is not * part of this output. For algorithms where the * encrypted data and the authentication tag * are defined as separate outputs, the * authentication tag is appended to the * encrypted data. * \param ciphertext_size Size of the \p ciphertext buffer in bytes. * This must be at least * #PSA_AEAD_ENCRYPT_OUTPUT_SIZE(\p alg, * \p plaintext_length). * \param ciphertext_length On success, the size of the output * in the \b ciphertext buffer. * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_NOT_PERMITTED * \retval PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg. * \retval PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not an AEAD algorithm. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_aead_encrypt( psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *nonce, size_t nonce_length, const uint8_t *additional_data, size_t additional_data_length, const uint8_t *plaintext, size_t plaintext_length, uint8_t *ciphertext, size_t ciphertext_size, size_t *ciphertext_length ); /** Process an authenticated decryption operation. * * \param key Slot containing the key to use. * \param alg The AEAD algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_AEAD(alg) is true). * \param nonce Nonce or IV to use. * \param nonce_length Size of the \p nonce buffer in bytes. * \param additional_data Additional data that has been authenticated * but not encrypted. * \param additional_data_length Size of \p additional_data in bytes. * \param ciphertext Data that has been authenticated and * encrypted. For algorithms where the * encrypted data and the authentication tag * are defined as separate inputs, the buffer * must contain the encrypted data followed * by the authentication tag. * \param ciphertext_length Size of \p ciphertext in bytes. * \param plaintext Output buffer for the decrypted data. * \param plaintext_size Size of the \p plaintext buffer in bytes. * This must be at least * #PSA_AEAD_DECRYPT_OUTPUT_SIZE(\p alg, * \p ciphertext_length). * \param plaintext_length On success, the size of the output * in the \b plaintext buffer. * * \retval PSA_SUCCESS * Success. * \retval PSA_ERROR_EMPTY_SLOT * \retval PSA_ERROR_INVALID_SIGNATURE * The ciphertext is not authentic. * \retval PSA_ERROR_NOT_PERMITTED * \retval PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg. * \retval PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not an AEAD algorithm. * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_aead_decrypt( psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *nonce, size_t nonce_length, const uint8_t *additional_data, size_t additional_data_length, const uint8_t *ciphertext, size_t ciphertext_length, uint8_t *plaintext, size_t plaintext_size, size_t *plaintext_length ); /**@}*/ /** \defgroup asymmetric Asymmetric cryptography * @{ */ /** * \brief ECDSA signature size for a given curve bit size * * \param curve_bits Curve size in bits. * \return Signature size in bytes. * * \note This macro returns a compile-time constant if its argument is one. */ #define PSA_ECDSA_SIGNATURE_SIZE(curve_bits) \ (PSA_BITS_TO_BYTES(curve_bits) * 2) /** * \brief Sign a hash or short message with a private key. * * Note that to perform a hash-and-sign signature algorithm, you must * first calculate the hash by calling psa_hash_start(), psa_hash_update() * and psa_hash_finish(). Then pass the resulting hash as the \p hash * parameter to this function. You can use #PSA_ALG_SIGN_GET_HASH(\p alg) * to determine the hash algorithm to use. * * \param key Key slot containing an asymmetric key pair. * \param alg A signature algorithm that is compatible with * the type of \c key. * \param hash The hash or message to sign. * \param hash_length Size of the \c hash buffer in bytes. * \param salt A salt or label, if supported by the signature * algorithm. * If the signature algorithm does not support a * salt, pass \c NULL. * If the signature algorithm supports an optional * salt and you do not want to pass a salt, * pass \c NULL. * \param salt_length Size of the \c salt buffer in bytes. * If \c salt is \c NULL, pass 0. * \param signature Buffer where the signature is to be written. * \param signature_size Size of the \c signature buffer in bytes. * \param signature_length On success, the number of bytes * that make up the returned signature value. * * \retval PSA_SUCCESS * \retval PSA_ERROR_BUFFER_TOO_SMALL * The size of the \c signature buffer is too small. You can * determine a sufficient buffer size by calling * #PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE(key_type, key_bits, alg) * where \c key_type and \c key_bits are the type and bit-size * respectively of \c key. * \retval PSA_ERROR_NOT_SUPPORTED * \retval PSA_ERROR_INVALID_ARGUMENT * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED * \retval PSA_ERROR_INSUFFICIENT_ENTROPY */ psa_status_t psa_asymmetric_sign(psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, const uint8_t *salt, size_t salt_length, uint8_t *signature, size_t signature_size, size_t *signature_length); /** * \brief Verify the signature a hash or short message using a public key. * * Note that to perform a hash-and-sign signature algorithm, you must * first calculate the hash by calling psa_hash_start(), psa_hash_update() * and psa_hash_finish(). Then pass the resulting hash as the \p hash * parameter to this function. You can use #PSA_ALG_SIGN_GET_HASH(\p alg) * to determine the hash algorithm to use. * * \param key Key slot containing a public key or an * asymmetric key pair. * \param alg A signature algorithm that is compatible with * the type of \c key. * \param hash The hash or message whose signature is to be * verified. * \param hash_length Size of the \c hash buffer in bytes. * \param salt A salt or label, if supported by the signature * algorithm. * If the signature algorithm does not support a * salt, pass \c NULL. * If the signature algorithm supports an optional * salt and you do not want to pass a salt, * pass \c NULL. * \param salt_length Size of the \c salt buffer in bytes. * If \c salt is \c NULL, pass 0. * \param signature Buffer containing the signature to verify. * \param signature_length Size of the \c signature buffer in bytes. * * \retval PSA_SUCCESS * The signature is valid. * \retval PSA_ERROR_INVALID_SIGNATURE * The calculation was perfomed successfully, but the passed * signature is not a valid signature. * \retval PSA_ERROR_NOT_SUPPORTED * \retval PSA_ERROR_INVALID_ARGUMENT * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_asymmetric_verify(psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, const uint8_t *salt, size_t salt_length, const uint8_t *signature, size_t signature_length); #define PSA_RSA_MINIMUM_PADDING_SIZE(alg) \ (PSA_ALG_IS_RSA_OAEP_MGF1(alg) ? \ 2 * PSA_HASH_FINAL_SIZE(PSA_ALG_RSA_GET_HASH(alg)) + 1 : \ 11 /*PKCS#1v1.5*/) /** * \brief Encrypt a short message with a public key. * * \param key Key slot containing a public key or an asymmetric * key pair. * \param alg An asymmetric encryption algorithm that is * compatible with the type of \c key. * \param input The message to encrypt. * \param input_length Size of the \c input buffer in bytes. * \param salt A salt or label, if supported by the encryption * algorithm. * If the algorithm does not support a * salt, pass \c NULL. * If the algorithm supports an optional * salt and you do not want to pass a salt, * pass \c NULL. * * - For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is * supported. * \param salt_length Size of the \c salt buffer in bytes. * If \c salt is \c NULL, pass 0. * \param output Buffer where the encrypted message is to be written. * \param output_size Size of the \c output buffer in bytes. * \param output_length On success, the number of bytes * that make up the returned output. * * \retval PSA_SUCCESS * \retval PSA_ERROR_BUFFER_TOO_SMALL * The size of the \c output buffer is too small. You can * determine a sufficient buffer size by calling * #PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits, alg) * where \c key_type and \c key_bits are the type and bit-size * respectively of \c key. * \retval PSA_ERROR_NOT_SUPPORTED * \retval PSA_ERROR_INVALID_ARGUMENT * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED * \retval PSA_ERROR_INSUFFICIENT_ENTROPY */ psa_status_t psa_asymmetric_encrypt(psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *input, size_t input_length, const uint8_t *salt, size_t salt_length, uint8_t *output, size_t output_size, size_t *output_length); /** * \brief Decrypt a short message with a private key. * * \param key Key slot containing an asymmetric key pair. * \param alg An asymmetric encryption algorithm that is * compatible with the type of \c key. * \param input The message to decrypt. * \param input_length Size of the \c input buffer in bytes. * \param salt A salt or label, if supported by the encryption * algorithm. * If the algorithm does not support a * salt, pass \c NULL. * If the algorithm supports an optional * salt and you do not want to pass a salt, * pass \c NULL. * * - For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is * supported. * \param salt_length Size of the \c salt buffer in bytes. * If \c salt is \c NULL, pass 0. * \param output Buffer where the decrypted message is to be written. * \param output_size Size of the \c output buffer in bytes. * \param output_length On success, the number of bytes * that make up the returned output. * * \retval PSA_SUCCESS * \retval PSA_ERROR_BUFFER_TOO_SMALL * The size of the \c output buffer is too small. You can * determine a sufficient buffer size by calling * #PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg) * where \c key_type and \c key_bits are the type and bit-size * respectively of \c key. * \retval PSA_ERROR_NOT_SUPPORTED * \retval PSA_ERROR_INVALID_ARGUMENT * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED * \retval PSA_ERROR_INSUFFICIENT_ENTROPY * \retval PSA_ERROR_INVALID_PADDING */ psa_status_t psa_asymmetric_decrypt(psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *input, size_t input_length, const uint8_t *salt, size_t salt_length, uint8_t *output, size_t output_size, size_t *output_length); /**@}*/ /** \defgroup generation Key generation * @{ */ /** * \brief Generate random bytes. * * \warning This function **can** fail! Callers MUST check the return status * and MUST NOT use the content of the output buffer if the return * status is not #PSA_SUCCESS. * * \note To generate a key, use psa_generate_key() instead. * * \param output Output buffer for the generated data. * \param output_size Number of bytes to generate and output. * * \retval PSA_SUCCESS * \retval PSA_ERROR_NOT_SUPPORTED * \retval PSA_ERROR_INSUFFICIENT_ENTROPY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_generate_random(uint8_t *output, size_t output_size); /** * \brief Generate a key or key pair. * * \param key Slot where the key will be stored. This must be a * valid slot for a key of the chosen type. It must * be unoccupied. * \param type Key type (a \c PSA_KEY_TYPE_XXX value). * \param bits Key size in bits. * \param parameters Extra parameters for key generation. The * interpretation of this parameter depends on * \c type. All types support \c NULL to use * the default parameters specified below. * \param parameters_size Size of the buffer that \p parameters * points to, in bytes. * * For any symmetric key type (type such that * `PSA_KEY_TYPE_IS_ASYMMETRIC(type)` is false), \c parameters must be * \c NULL. For asymmetric key types defined by this specification, * the parameter type and the default parameters are defined by the * table below. For vendor-defined key types, the vendor documentation * shall define the parameter type and the default parameters. * * Type | Parameter type | Meaning | Parameters used if `parameters == NULL` * ---- | -------------- | ------- | --------------------------------------- * `PSA_KEY_TYPE_RSA_KEYPAIR` | `unsigned int` | Public exponent | 65537 * * \retval PSA_SUCCESS * \retval PSA_ERROR_NOT_SUPPORTED * \retval PSA_ERROR_INVALID_ARGUMENT * \retval PSA_ERROR_INSUFFICIENT_MEMORY * \retval PSA_ERROR_INSUFFICIENT_ENTROPY * \retval PSA_ERROR_COMMUNICATION_FAILURE * \retval PSA_ERROR_HARDWARE_FAILURE * \retval PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_generate_key(psa_key_slot_t key, psa_key_type_t type, size_t bits, const void *parameters, size_t parameters_size); /**@}*/ #ifdef __cplusplus } #endif /* The file "crypto_sizes.h" contains definitions for size calculation * macros whose definitions are implementation-specific. */ #include "crypto_sizes.h" /* The file "crypto_struct.h" contains definitions for * implementation-specific structs that are declared above. */ #include "crypto_struct.h" /* The file "crypto_extra.h" contains vendor-specific definitions. This * can include vendor-defined algorithms, extra functions, etc. */ #include "crypto_extra.h" #endif /* PSA_CRYPTO_H */