/* * SSLv3/TLSv1 shared functions * * Copyright (C) 2006-2012, Brainspark B.V. * * This file is part of PolarSSL (http://www.polarssl.org) * Lead Maintainer: Paul Bakker * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* * The SSL 3.0 specification was drafted by Netscape in 1996, * and became an IETF standard in 1999. * * http://wp.netscape.com/eng/ssl3/ * http://www.ietf.org/rfc/rfc2246.txt * http://www.ietf.org/rfc/rfc4346.txt */ #include "polarssl/config.h" #if defined(POLARSSL_SSL_TLS_C) #include "polarssl/aes.h" #include "polarssl/arc4.h" #include "polarssl/camellia.h" #include "polarssl/des.h" #include "polarssl/debug.h" #include "polarssl/ssl.h" #include "polarssl/sha2.h" #if defined(POLARSSL_GCM_C) #include "polarssl/gcm.h" #endif #include #include #if defined _MSC_VER && !defined strcasecmp #define strcasecmp _stricmp #endif #if defined(POLARSSL_SSL_HW_RECORD_ACCEL) int (*ssl_hw_record_init)(ssl_context *ssl, const unsigned char *key_enc, const unsigned char *key_dec, const unsigned char *iv_enc, const unsigned char *iv_dec, const unsigned char *mac_enc, const unsigned char *mac_dec) = NULL; int (*ssl_hw_record_reset)(ssl_context *ssl) = NULL; int (*ssl_hw_record_write)(ssl_context *ssl) = NULL; int (*ssl_hw_record_read)(ssl_context *ssl) = NULL; int (*ssl_hw_record_finish)(ssl_context *ssl) = NULL; #endif static int ssl_rsa_decrypt( void *ctx, int mode, size_t *olen, const unsigned char *input, unsigned char *output, size_t output_max_len ) { return rsa_pkcs1_decrypt( (rsa_context *) ctx, mode, olen, input, output, output_max_len ); } static int ssl_rsa_sign( void *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, int hash_id, unsigned int hashlen, const unsigned char *hash, unsigned char *sig ) { return rsa_pkcs1_sign( (rsa_context *) ctx, f_rng, p_rng, mode, hash_id, hashlen, hash, sig ); } static size_t ssl_rsa_key_len( void *ctx ) { return ( (rsa_context *) ctx )->len; } /* * Key material generation */ static int ssl3_prf( unsigned char *secret, size_t slen, char *label, unsigned char *random, size_t rlen, unsigned char *dstbuf, size_t dlen ) { size_t i; md5_context md5; sha1_context sha1; unsigned char padding[16]; unsigned char sha1sum[20]; ((void)label); /* * SSLv3: * block = * MD5( secret + SHA1( 'A' + secret + random ) ) + * MD5( secret + SHA1( 'BB' + secret + random ) ) + * MD5( secret + SHA1( 'CCC' + secret + random ) ) + * ... */ for( i = 0; i < dlen / 16; i++ ) { memset( padding, 'A' + i, 1 + i ); sha1_starts( &sha1 ); sha1_update( &sha1, padding, 1 + i ); sha1_update( &sha1, secret, slen ); sha1_update( &sha1, random, rlen ); sha1_finish( &sha1, sha1sum ); md5_starts( &md5 ); md5_update( &md5, secret, slen ); md5_update( &md5, sha1sum, 20 ); md5_finish( &md5, dstbuf + i * 16 ); } memset( &md5, 0, sizeof( md5 ) ); memset( &sha1, 0, sizeof( sha1 ) ); memset( padding, 0, sizeof( padding ) ); memset( sha1sum, 0, sizeof( sha1sum ) ); return( 0 ); } static int tls1_prf( unsigned char *secret, size_t slen, char *label, unsigned char *random, size_t rlen, unsigned char *dstbuf, size_t dlen ) { size_t nb, hs; size_t i, j, k; unsigned char *S1, *S2; unsigned char tmp[128]; unsigned char h_i[20]; if( sizeof( tmp ) < 20 + strlen( label ) + rlen ) return( POLARSSL_ERR_SSL_BAD_INPUT_DATA ); hs = ( slen + 1 ) / 2; S1 = secret; S2 = secret + slen - hs; nb = strlen( label ); memcpy( tmp + 20, label, nb ); memcpy( tmp + 20 + nb, random, rlen ); nb += rlen; /* * First compute P_md5(secret,label+random)[0..dlen] */ md5_hmac( S1, hs, tmp + 20, nb, 4 + tmp ); for( i = 0; i < dlen; i += 16 ) { md5_hmac( S1, hs, 4 + tmp, 16 + nb, h_i ); md5_hmac( S1, hs, 4 + tmp, 16, 4 + tmp ); k = ( i + 16 > dlen ) ? dlen % 16 : 16; for( j = 0; j < k; j++ ) dstbuf[i + j] = h_i[j]; } /* * XOR out with P_sha1(secret,label+random)[0..dlen] */ sha1_hmac( S2, hs, tmp + 20, nb, tmp ); for( i = 0; i < dlen; i += 20 ) { sha1_hmac( S2, hs, tmp, 20 + nb, h_i ); sha1_hmac( S2, hs, tmp, 20, tmp ); k = ( i + 20 > dlen ) ? dlen % 20 : 20; for( j = 0; j < k; j++ ) dstbuf[i + j] = (unsigned char)( dstbuf[i + j] ^ h_i[j] ); } memset( tmp, 0, sizeof( tmp ) ); memset( h_i, 0, sizeof( h_i ) ); return( 0 ); } static int tls_prf_sha256( unsigned char *secret, size_t slen, char *label, unsigned char *random, size_t rlen, unsigned char *dstbuf, size_t dlen ) { size_t nb; size_t i, j, k; unsigned char tmp[128]; unsigned char h_i[32]; if( sizeof( tmp ) < 32 + strlen( label ) + rlen ) return( POLARSSL_ERR_SSL_BAD_INPUT_DATA ); nb = strlen( label ); memcpy( tmp + 32, label, nb ); memcpy( tmp + 32 + nb, random, rlen ); nb += rlen; /* * Compute P_(secret, label + random)[0..dlen] */ sha2_hmac( secret, slen, tmp + 32, nb, tmp, 0 ); for( i = 0; i < dlen; i += 32 ) { sha2_hmac( secret, slen, tmp, 32 + nb, h_i, 0 ); sha2_hmac( secret, slen, tmp, 32, tmp, 0 ); k = ( i + 32 > dlen ) ? dlen % 32 : 32; for( j = 0; j < k; j++ ) dstbuf[i + j] = h_i[j]; } memset( tmp, 0, sizeof( tmp ) ); memset( h_i, 0, sizeof( h_i ) ); return( 0 ); } static int tls_prf_sha384( unsigned char *secret, size_t slen, char *label, unsigned char *random, size_t rlen, unsigned char *dstbuf, size_t dlen ) { size_t nb; size_t i, j, k; unsigned char tmp[128]; unsigned char h_i[48]; if( sizeof( tmp ) < 48 + strlen( label ) + rlen ) return( POLARSSL_ERR_SSL_BAD_INPUT_DATA ); nb = strlen( label ); memcpy( tmp + 48, label, nb ); memcpy( tmp + 48 + nb, random, rlen ); nb += rlen; /* * Compute P_(secret, label + random)[0..dlen] */ sha4_hmac( secret, slen, tmp + 48, nb, tmp, 1 ); for( i = 0; i < dlen; i += 48 ) { sha4_hmac( secret, slen, tmp, 48 + nb, h_i, 1 ); sha4_hmac( secret, slen, tmp, 48, tmp, 1 ); k = ( i + 48 > dlen ) ? dlen % 48 : 48; for( j = 0; j < k; j++ ) dstbuf[i + j] = h_i[j]; } memset( tmp, 0, sizeof( tmp ) ); memset( h_i, 0, sizeof( h_i ) ); return( 0 ); } static void ssl_update_checksum_start(ssl_context *, unsigned char *, size_t); static void ssl_update_checksum_md5sha1(ssl_context *, unsigned char *, size_t); static void ssl_update_checksum_sha256(ssl_context *, unsigned char *, size_t); static void ssl_update_checksum_sha384(ssl_context *, unsigned char *, size_t); static void ssl_calc_verify_ssl(ssl_context *,unsigned char *); static void ssl_calc_verify_tls(ssl_context *,unsigned char *); static void ssl_calc_verify_tls_sha256(ssl_context *,unsigned char *); static void ssl_calc_verify_tls_sha384(ssl_context *,unsigned char *); static void ssl_calc_finished_ssl(ssl_context *,unsigned char *,int); static void ssl_calc_finished_tls(ssl_context *,unsigned char *,int); static void ssl_calc_finished_tls_sha256(ssl_context *,unsigned char *,int); static void ssl_calc_finished_tls_sha384(ssl_context *,unsigned char *,int); int ssl_derive_keys( ssl_context *ssl ) { unsigned char tmp[64]; unsigned char keyblk[256]; unsigned char *key1; unsigned char *key2; unsigned int iv_copy_len; ssl_session *session = ssl->session_negotiate; ssl_transform *transform = ssl->transform_negotiate; ssl_handshake_params *handshake = ssl->handshake; SSL_DEBUG_MSG( 2, ( "=> derive keys" ) ); /* * Set appropriate PRF function and other SSL / TLS / TLS1.2 functions */ if( ssl->minor_ver == SSL_MINOR_VERSION_0 ) { handshake->tls_prf = ssl3_prf; handshake->calc_verify = ssl_calc_verify_ssl; handshake->calc_finished = ssl_calc_finished_ssl; } else if( ssl->minor_ver < SSL_MINOR_VERSION_3 ) { handshake->tls_prf = tls1_prf; handshake->calc_verify = ssl_calc_verify_tls; handshake->calc_finished = ssl_calc_finished_tls; } else if( session->ciphersuite == SSL_RSA_AES_256_GCM_SHA384 || session->ciphersuite == SSL_EDH_RSA_AES_256_GCM_SHA384 ) { handshake->tls_prf = tls_prf_sha384; handshake->calc_verify = ssl_calc_verify_tls_sha384; handshake->calc_finished = ssl_calc_finished_tls_sha384; } else { handshake->tls_prf = tls_prf_sha256; handshake->calc_verify = ssl_calc_verify_tls_sha256; handshake->calc_finished = ssl_calc_finished_tls_sha256; } /* * SSLv3: * master = * MD5( premaster + SHA1( 'A' + premaster + randbytes ) ) + * MD5( premaster + SHA1( 'BB' + premaster + randbytes ) ) + * MD5( premaster + SHA1( 'CCC' + premaster + randbytes ) ) * * TLSv1: * master = PRF( premaster, "master secret", randbytes )[0..47] */ if( handshake->resume == 0 ) { SSL_DEBUG_BUF( 3, "premaster secret", handshake->premaster, handshake->pmslen ); handshake->tls_prf( handshake->premaster, handshake->pmslen, "master secret", handshake->randbytes, 64, session->master, 48 ); memset( handshake->premaster, 0, sizeof( handshake->premaster ) ); } else SSL_DEBUG_MSG( 3, ( "no premaster (session resumed)" ) ); /* * Swap the client and server random values. */ memcpy( tmp, handshake->randbytes, 64 ); memcpy( handshake->randbytes, tmp + 32, 32 ); memcpy( handshake->randbytes + 32, tmp, 32 ); memset( tmp, 0, sizeof( tmp ) ); /* * SSLv3: * key block = * MD5( master + SHA1( 'A' + master + randbytes ) ) + * MD5( master + SHA1( 'BB' + master + randbytes ) ) + * MD5( master + SHA1( 'CCC' + master + randbytes ) ) + * MD5( master + SHA1( 'DDDD' + master + randbytes ) ) + * ... * * TLSv1: * key block = PRF( master, "key expansion", randbytes ) */ handshake->tls_prf( session->master, 48, "key expansion", handshake->randbytes, 64, keyblk, 256 ); SSL_DEBUG_MSG( 3, ( "ciphersuite = %s", ssl_get_ciphersuite_name( session->ciphersuite ) ) ); SSL_DEBUG_BUF( 3, "master secret", session->master, 48 ); SSL_DEBUG_BUF( 4, "random bytes", handshake->randbytes, 64 ); SSL_DEBUG_BUF( 4, "key block", keyblk, 256 ); memset( handshake->randbytes, 0, sizeof( handshake->randbytes ) ); /* * Determine the appropriate key, IV and MAC length. */ switch( session->ciphersuite ) { #if defined(POLARSSL_ARC4_C) case SSL_RSA_RC4_128_MD5: transform->keylen = 16; transform->minlen = 16; transform->ivlen = 0; transform->maclen = 16; break; case SSL_RSA_RC4_128_SHA: transform->keylen = 16; transform->minlen = 20; transform->ivlen = 0; transform->maclen = 20; break; #endif #if defined(POLARSSL_DES_C) case SSL_RSA_DES_168_SHA: case SSL_EDH_RSA_DES_168_SHA: transform->keylen = 24; transform->minlen = 24; transform->ivlen = 8; transform->maclen = 20; break; #endif #if defined(POLARSSL_AES_C) case SSL_RSA_AES_128_SHA: case SSL_EDH_RSA_AES_128_SHA: transform->keylen = 16; transform->minlen = 32; transform->ivlen = 16; transform->maclen = 20; break; case SSL_RSA_AES_256_SHA: case SSL_EDH_RSA_AES_256_SHA: transform->keylen = 32; transform->minlen = 32; transform->ivlen = 16; transform->maclen = 20; break; #if defined(POLARSSL_SHA2_C) case SSL_RSA_AES_128_SHA256: case SSL_EDH_RSA_AES_128_SHA256: transform->keylen = 16; transform->minlen = 32; transform->ivlen = 16; transform->maclen = 32; break; case SSL_RSA_AES_256_SHA256: case SSL_EDH_RSA_AES_256_SHA256: transform->keylen = 32; transform->minlen = 32; transform->ivlen = 16; transform->maclen = 32; break; #endif #if defined(POLARSSL_GCM_C) case SSL_RSA_AES_128_GCM_SHA256: case SSL_EDH_RSA_AES_128_GCM_SHA256: transform->keylen = 16; transform->minlen = 1; transform->ivlen = 12; transform->maclen = 0; transform->fixed_ivlen = 4; break; case SSL_RSA_AES_256_GCM_SHA384: case SSL_EDH_RSA_AES_256_GCM_SHA384: transform->keylen = 32; transform->minlen = 1; transform->ivlen = 12; transform->maclen = 0; transform->fixed_ivlen = 4; break; #endif #endif #if defined(POLARSSL_CAMELLIA_C) case SSL_RSA_CAMELLIA_128_SHA: case SSL_EDH_RSA_CAMELLIA_128_SHA: transform->keylen = 16; transform->minlen = 32; transform->ivlen = 16; transform->maclen = 20; break; case SSL_RSA_CAMELLIA_256_SHA: case SSL_EDH_RSA_CAMELLIA_256_SHA: transform->keylen = 32; transform->minlen = 32; transform->ivlen = 16; transform->maclen = 20; break; #if defined(POLARSSL_SHA2_C) case SSL_RSA_CAMELLIA_128_SHA256: case SSL_EDH_RSA_CAMELLIA_128_SHA256: transform->keylen = 16; transform->minlen = 32; transform->ivlen = 16; transform->maclen = 32; break; case SSL_RSA_CAMELLIA_256_SHA256: case SSL_EDH_RSA_CAMELLIA_256_SHA256: transform->keylen = 32; transform->minlen = 32; transform->ivlen = 16; transform->maclen = 32; break; #endif #endif #if defined(POLARSSL_ENABLE_WEAK_CIPHERSUITES) #if defined(POLARSSL_CIPHER_NULL_CIPHER) case SSL_RSA_NULL_MD5: transform->keylen = 0; transform->minlen = 0; transform->ivlen = 0; transform->maclen = 16; break; case SSL_RSA_NULL_SHA: transform->keylen = 0; transform->minlen = 0; transform->ivlen = 0; transform->maclen = 20; break; case SSL_RSA_NULL_SHA256: transform->keylen = 0; transform->minlen = 0; transform->ivlen = 0; transform->maclen = 32; break; #endif /* defined(POLARSSL_CIPHER_NULL_CIPHER) */ #if defined(POLARSSL_DES_C) case SSL_RSA_DES_SHA: case SSL_EDH_RSA_DES_SHA: transform->keylen = 8; transform->minlen = 8; transform->ivlen = 8; transform->maclen = 20; break; #endif #endif /* defined(POLARSSL_ENABLE_WEAK_CIPHERSUITES) */ default: SSL_DEBUG_MSG( 1, ( "ciphersuite %s is not available", ssl_get_ciphersuite_name( session->ciphersuite ) ) ); return( POLARSSL_ERR_SSL_FEATURE_UNAVAILABLE ); } SSL_DEBUG_MSG( 3, ( "keylen: %d, minlen: %d, ivlen: %d, maclen: %d", transform->keylen, transform->minlen, transform->ivlen, transform->maclen ) ); /* * Finally setup the cipher contexts, IVs and MAC secrets. */ if( ssl->endpoint == SSL_IS_CLIENT ) { key1 = keyblk + transform->maclen * 2; key2 = keyblk + transform->maclen * 2 + transform->keylen; memcpy( transform->mac_enc, keyblk, transform->maclen ); memcpy( transform->mac_dec, keyblk + transform->maclen, transform->maclen ); /* * This is not used in TLS v1.1. */ iv_copy_len = ( transform->fixed_ivlen ) ? transform->fixed_ivlen : transform->ivlen; memcpy( transform->iv_enc, key2 + transform->keylen, iv_copy_len ); memcpy( transform->iv_dec, key2 + transform->keylen + iv_copy_len, iv_copy_len ); } else { key1 = keyblk + transform->maclen * 2 + transform->keylen; key2 = keyblk + transform->maclen * 2; memcpy( transform->mac_dec, keyblk, transform->maclen ); memcpy( transform->mac_enc, keyblk + transform->maclen, transform->maclen ); /* * This is not used in TLS v1.1. */ iv_copy_len = ( transform->fixed_ivlen ) ? transform->fixed_ivlen : transform->ivlen; memcpy( transform->iv_dec, key1 + transform->keylen, iv_copy_len ); memcpy( transform->iv_enc, key1 + transform->keylen + iv_copy_len, iv_copy_len ); } #if defined(POLARSSL_SSL_HW_RECORD_ACCEL) if( ssl_hw_record_init != NULL) { int ret = 0; SSL_DEBUG_MSG( 2, ( "going for ssl_hw_record_init()" ) ); if( ( ret = ssl_hw_record_init( ssl, key1, key2, transform->iv_enc, transform->iv_dec, transform->mac_enc, transform->mac_dec ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_hw_record_init", ret ); return POLARSSL_ERR_SSL_HW_ACCEL_FAILED; } } #endif switch( session->ciphersuite ) { #if defined(POLARSSL_ARC4_C) case SSL_RSA_RC4_128_MD5: case SSL_RSA_RC4_128_SHA: arc4_setup( (arc4_context *) transform->ctx_enc, key1, transform->keylen ); arc4_setup( (arc4_context *) transform->ctx_dec, key2, transform->keylen ); break; #endif #if defined(POLARSSL_DES_C) case SSL_RSA_DES_168_SHA: case SSL_EDH_RSA_DES_168_SHA: des3_set3key_enc( (des3_context *) transform->ctx_enc, key1 ); des3_set3key_dec( (des3_context *) transform->ctx_dec, key2 ); break; #endif #if defined(POLARSSL_AES_C) case SSL_RSA_AES_128_SHA: case SSL_EDH_RSA_AES_128_SHA: case SSL_RSA_AES_128_SHA256: case SSL_EDH_RSA_AES_128_SHA256: aes_setkey_enc( (aes_context *) transform->ctx_enc, key1, 128 ); aes_setkey_dec( (aes_context *) transform->ctx_dec, key2, 128 ); break; case SSL_RSA_AES_256_SHA: case SSL_EDH_RSA_AES_256_SHA: case SSL_RSA_AES_256_SHA256: case SSL_EDH_RSA_AES_256_SHA256: aes_setkey_enc( (aes_context *) transform->ctx_enc, key1, 256 ); aes_setkey_dec( (aes_context *) transform->ctx_dec, key2, 256 ); break; #if defined(POLARSSL_GCM_C) case SSL_RSA_AES_128_GCM_SHA256: case SSL_EDH_RSA_AES_128_GCM_SHA256: gcm_init( (gcm_context *) transform->ctx_enc, key1, 128 ); gcm_init( (gcm_context *) transform->ctx_dec, key2, 128 ); break; case SSL_RSA_AES_256_GCM_SHA384: case SSL_EDH_RSA_AES_256_GCM_SHA384: gcm_init( (gcm_context *) transform->ctx_enc, key1, 256 ); gcm_init( (gcm_context *) transform->ctx_dec, key2, 256 ); break; #endif #endif #if defined(POLARSSL_CAMELLIA_C) case SSL_RSA_CAMELLIA_128_SHA: case SSL_EDH_RSA_CAMELLIA_128_SHA: case SSL_RSA_CAMELLIA_128_SHA256: case SSL_EDH_RSA_CAMELLIA_128_SHA256: camellia_setkey_enc( (camellia_context *) transform->ctx_enc, key1, 128 ); camellia_setkey_dec( (camellia_context *) transform->ctx_dec, key2, 128 ); break; case SSL_RSA_CAMELLIA_256_SHA: case SSL_EDH_RSA_CAMELLIA_256_SHA: case SSL_RSA_CAMELLIA_256_SHA256: case SSL_EDH_RSA_CAMELLIA_256_SHA256: camellia_setkey_enc( (camellia_context *) transform->ctx_enc, key1, 256 ); camellia_setkey_dec( (camellia_context *) transform->ctx_dec, key2, 256 ); break; #endif #if defined(POLARSSL_ENABLE_WEAK_CIPHERSUITES) #if defined(POLARSSL_CIPHER_NULL_CIPHER) case SSL_RSA_NULL_MD5: case SSL_RSA_NULL_SHA: case SSL_RSA_NULL_SHA256: break; #endif /* defined(POLARSSL_CIPHER_NULL_CIPHER) */ #if defined(POLARSSL_DES_C) case SSL_RSA_DES_SHA: case SSL_EDH_RSA_DES_SHA: des_setkey_enc( (des_context *) transform->ctx_enc, key1 ); des_setkey_dec( (des_context *) transform->ctx_dec, key2 ); break; #endif #endif /* defined(POLARSSL_ENABLE_WEAK_CIPHERSUITES) */ default: return( POLARSSL_ERR_SSL_FEATURE_UNAVAILABLE ); } memset( keyblk, 0, sizeof( keyblk ) ); #if defined(POLARSSL_ZLIB_SUPPORT) // Initialize compression // if( session->compression == SSL_COMPRESS_DEFLATE ) { SSL_DEBUG_MSG( 3, ( "Initializing zlib states" ) ); memset( &transform->ctx_deflate, 0, sizeof( transform->ctx_deflate ) ); memset( &transform->ctx_inflate, 0, sizeof( transform->ctx_inflate ) ); if( deflateInit( &transform->ctx_deflate, Z_DEFAULT_COMPRESSION ) != Z_OK || inflateInit( &transform->ctx_inflate ) != Z_OK ) { SSL_DEBUG_MSG( 1, ( "Failed to initialize compression" ) ); return( POLARSSL_ERR_SSL_COMPRESSION_FAILED ); } } #endif /* POLARSSL_ZLIB_SUPPORT */ SSL_DEBUG_MSG( 2, ( "<= derive keys" ) ); return( 0 ); } void ssl_calc_verify_ssl( ssl_context *ssl, unsigned char hash[36] ) { md5_context md5; sha1_context sha1; unsigned char pad_1[48]; unsigned char pad_2[48]; SSL_DEBUG_MSG( 2, ( "=> calc verify ssl" ) ); memcpy( &md5 , &ssl->handshake->fin_md5 , sizeof(md5_context) ); memcpy( &sha1, &ssl->handshake->fin_sha1, sizeof(sha1_context) ); memset( pad_1, 0x36, 48 ); memset( pad_2, 0x5C, 48 ); md5_update( &md5, ssl->session_negotiate->master, 48 ); md5_update( &md5, pad_1, 48 ); md5_finish( &md5, hash ); md5_starts( &md5 ); md5_update( &md5, ssl->session_negotiate->master, 48 ); md5_update( &md5, pad_2, 48 ); md5_update( &md5, hash, 16 ); md5_finish( &md5, hash ); sha1_update( &sha1, ssl->session_negotiate->master, 48 ); sha1_update( &sha1, pad_1, 40 ); sha1_finish( &sha1, hash + 16 ); sha1_starts( &sha1 ); sha1_update( &sha1, ssl->session_negotiate->master, 48 ); sha1_update( &sha1, pad_2, 40 ); sha1_update( &sha1, hash + 16, 20 ); sha1_finish( &sha1, hash + 16 ); SSL_DEBUG_BUF( 3, "calculated verify result", hash, 36 ); SSL_DEBUG_MSG( 2, ( "<= calc verify" ) ); return; } void ssl_calc_verify_tls( ssl_context *ssl, unsigned char hash[36] ) { md5_context md5; sha1_context sha1; SSL_DEBUG_MSG( 2, ( "=> calc verify tls" ) ); memcpy( &md5 , &ssl->handshake->fin_md5 , sizeof(md5_context) ); memcpy( &sha1, &ssl->handshake->fin_sha1, sizeof(sha1_context) ); md5_finish( &md5, hash ); sha1_finish( &sha1, hash + 16 ); SSL_DEBUG_BUF( 3, "calculated verify result", hash, 36 ); SSL_DEBUG_MSG( 2, ( "<= calc verify" ) ); return; } void ssl_calc_verify_tls_sha256( ssl_context *ssl, unsigned char hash[32] ) { sha2_context sha2; SSL_DEBUG_MSG( 2, ( "=> calc verify sha256" ) ); memcpy( &sha2, &ssl->handshake->fin_sha2, sizeof(sha2_context) ); sha2_finish( &sha2, hash ); SSL_DEBUG_BUF( 3, "calculated verify result", hash, 32 ); SSL_DEBUG_MSG( 2, ( "<= calc verify" ) ); return; } void ssl_calc_verify_tls_sha384( ssl_context *ssl, unsigned char hash[48] ) { sha4_context sha4; SSL_DEBUG_MSG( 2, ( "=> calc verify sha384" ) ); memcpy( &sha4, &ssl->handshake->fin_sha4, sizeof(sha4_context) ); sha4_finish( &sha4, hash ); SSL_DEBUG_BUF( 3, "calculated verify result", hash, 48 ); SSL_DEBUG_MSG( 2, ( "<= calc verify" ) ); return; } /* * SSLv3.0 MAC functions */ static void ssl_mac_md5( unsigned char *secret, unsigned char *buf, size_t len, unsigned char *ctr, int type ) { unsigned char header[11]; unsigned char padding[48]; md5_context md5; memcpy( header, ctr, 8 ); header[ 8] = (unsigned char) type; header[ 9] = (unsigned char)( len >> 8 ); header[10] = (unsigned char)( len ); memset( padding, 0x36, 48 ); md5_starts( &md5 ); md5_update( &md5, secret, 16 ); md5_update( &md5, padding, 48 ); md5_update( &md5, header, 11 ); md5_update( &md5, buf, len ); md5_finish( &md5, buf + len ); memset( padding, 0x5C, 48 ); md5_starts( &md5 ); md5_update( &md5, secret, 16 ); md5_update( &md5, padding, 48 ); md5_update( &md5, buf + len, 16 ); md5_finish( &md5, buf + len ); } static void ssl_mac_sha1( unsigned char *secret, unsigned char *buf, size_t len, unsigned char *ctr, int type ) { unsigned char header[11]; unsigned char padding[40]; sha1_context sha1; memcpy( header, ctr, 8 ); header[ 8] = (unsigned char) type; header[ 9] = (unsigned char)( len >> 8 ); header[10] = (unsigned char)( len ); memset( padding, 0x36, 40 ); sha1_starts( &sha1 ); sha1_update( &sha1, secret, 20 ); sha1_update( &sha1, padding, 40 ); sha1_update( &sha1, header, 11 ); sha1_update( &sha1, buf, len ); sha1_finish( &sha1, buf + len ); memset( padding, 0x5C, 40 ); sha1_starts( &sha1 ); sha1_update( &sha1, secret, 20 ); sha1_update( &sha1, padding, 40 ); sha1_update( &sha1, buf + len, 20 ); sha1_finish( &sha1, buf + len ); } static void ssl_mac_sha2( unsigned char *secret, unsigned char *buf, size_t len, unsigned char *ctr, int type ) { unsigned char header[11]; unsigned char padding[32]; sha2_context sha2; memcpy( header, ctr, 8 ); header[ 8] = (unsigned char) type; header[ 9] = (unsigned char)( len >> 8 ); header[10] = (unsigned char)( len ); memset( padding, 0x36, 32 ); sha2_starts( &sha2, 0 ); sha2_update( &sha2, secret, 32 ); sha2_update( &sha2, padding, 32 ); sha2_update( &sha2, header, 11 ); sha2_update( &sha2, buf, len ); sha2_finish( &sha2, buf + len ); memset( padding, 0x5C, 32 ); sha2_starts( &sha2, 0 ); sha2_update( &sha2, secret, 32 ); sha2_update( &sha2, padding, 32 ); sha2_update( &sha2, buf + len, 32 ); sha2_finish( &sha2, buf + len ); } /* * Encryption/decryption functions */ static int ssl_encrypt_buf( ssl_context *ssl ) { size_t i, padlen; SSL_DEBUG_MSG( 2, ( "=> encrypt buf" ) ); /* * Add MAC then encrypt */ if( ssl->minor_ver == SSL_MINOR_VERSION_0 ) { if( ssl->transform_out->maclen == 16 ) ssl_mac_md5( ssl->transform_out->mac_enc, ssl->out_msg, ssl->out_msglen, ssl->out_ctr, ssl->out_msgtype ); else if( ssl->transform_out->maclen == 20 ) ssl_mac_sha1( ssl->transform_out->mac_enc, ssl->out_msg, ssl->out_msglen, ssl->out_ctr, ssl->out_msgtype ); else if( ssl->transform_out->maclen == 32 ) ssl_mac_sha2( ssl->transform_out->mac_enc, ssl->out_msg, ssl->out_msglen, ssl->out_ctr, ssl->out_msgtype ); else if( ssl->transform_out->maclen != 0 ) { SSL_DEBUG_MSG( 1, ( "invalid MAC len: %d", ssl->transform_out->maclen ) ); return( POLARSSL_ERR_SSL_FEATURE_UNAVAILABLE ); } } else { if( ssl->transform_out->maclen == 16 ) { md5_context ctx; md5_hmac_starts( &ctx, ssl->transform_out->mac_enc, 16 ); md5_hmac_update( &ctx, ssl->out_ctr, 13 ); md5_hmac_update( &ctx, ssl->out_msg, ssl->out_msglen ); md5_hmac_finish( &ctx, ssl->out_msg + ssl->out_msglen ); memset( &ctx, 0, sizeof(md5_context)); } else if( ssl->transform_out->maclen == 20 ) { sha1_context ctx; sha1_hmac_starts( &ctx, ssl->transform_out->mac_enc, 20 ); sha1_hmac_update( &ctx, ssl->out_ctr, 13 ); sha1_hmac_update( &ctx, ssl->out_msg, ssl->out_msglen ); sha1_hmac_finish( &ctx, ssl->out_msg + ssl->out_msglen ); memset( &ctx, 0, sizeof(sha1_context)); } else if( ssl->transform_out->maclen == 32 ) { sha2_context ctx; sha2_hmac_starts( &ctx, ssl->transform_out->mac_enc, 32, 0 ); sha2_hmac_update( &ctx, ssl->out_ctr, 13 ); sha2_hmac_update( &ctx, ssl->out_msg, ssl->out_msglen ); sha2_hmac_finish( &ctx, ssl->out_msg + ssl->out_msglen ); memset( &ctx, 0, sizeof(sha2_context)); } else if( ssl->transform_out->maclen != 0 ) { SSL_DEBUG_MSG( 1, ( "invalid MAC len: %d", ssl->transform_out->maclen ) ); return( POLARSSL_ERR_SSL_FEATURE_UNAVAILABLE ); } } SSL_DEBUG_BUF( 4, "computed mac", ssl->out_msg + ssl->out_msglen, ssl->transform_out->maclen ); ssl->out_msglen += ssl->transform_out->maclen; if( ssl->transform_out->ivlen == 0 ) { padlen = 0; SSL_DEBUG_MSG( 3, ( "before encrypt: msglen = %d, " "including %d bytes of padding", ssl->out_msglen, 0 ) ); SSL_DEBUG_BUF( 4, "before encrypt: output payload", ssl->out_msg, ssl->out_msglen ); #if defined(POLARSSL_ARC4_C) if( ssl->session_out->ciphersuite == SSL_RSA_RC4_128_MD5 || ssl->session_out->ciphersuite == SSL_RSA_RC4_128_SHA ) { arc4_crypt( (arc4_context *) ssl->transform_out->ctx_enc, ssl->out_msglen, ssl->out_msg, ssl->out_msg ); } else #endif #if defined(POLARSSL_CIPHER_NULL_CIPHER) if( ssl->session_out->ciphersuite == SSL_RSA_NULL_MD5 || ssl->session_out->ciphersuite == SSL_RSA_NULL_SHA || ssl->session_out->ciphersuite == SSL_RSA_NULL_SHA256 ) { } else #endif return( POLARSSL_ERR_SSL_FEATURE_UNAVAILABLE ); } else if( ssl->transform_out->ivlen == 12 ) { size_t enc_msglen; unsigned char *enc_msg; unsigned char add_data[13]; int ret = POLARSSL_ERR_SSL_FEATURE_UNAVAILABLE; padlen = 0; enc_msglen = ssl->out_msglen; memcpy( add_data, ssl->out_ctr, 8 ); add_data[8] = ssl->out_msgtype; add_data[9] = ssl->major_ver; add_data[10] = ssl->minor_ver; add_data[11] = ( ssl->out_msglen >> 8 ) & 0xFF; add_data[12] = ssl->out_msglen & 0xFF; SSL_DEBUG_BUF( 4, "additional data used for AEAD", add_data, 13 ); #if defined(POLARSSL_AES_C) && defined(POLARSSL_GCM_C) if( ssl->session_out->ciphersuite == SSL_RSA_AES_128_GCM_SHA256 || ssl->session_out->ciphersuite == SSL_EDH_RSA_AES_128_GCM_SHA256 || ssl->session_out->ciphersuite == SSL_RSA_AES_256_GCM_SHA384 || ssl->session_out->ciphersuite == SSL_EDH_RSA_AES_256_GCM_SHA384 ) { /* * Generate IV */ ret = ssl->f_rng( ssl->p_rng, ssl->transform_out->iv_enc + ssl->transform_out->fixed_ivlen, ssl->transform_out->ivlen - ssl->transform_out->fixed_ivlen ); if( ret != 0 ) return( ret ); /* * Shift message for ivlen bytes and prepend IV */ memmove( ssl->out_msg + ssl->transform_out->ivlen - ssl->transform_out->fixed_ivlen, ssl->out_msg, ssl->out_msglen ); memcpy( ssl->out_msg, ssl->transform_out->iv_enc + ssl->transform_out->fixed_ivlen, ssl->transform_out->ivlen - ssl->transform_out->fixed_ivlen ); /* * Fix pointer positions and message length with added IV */ enc_msg = ssl->out_msg + ssl->transform_out->ivlen - ssl->transform_out->fixed_ivlen; enc_msglen = ssl->out_msglen; ssl->out_msglen += ssl->transform_out->ivlen - ssl->transform_out->fixed_ivlen; SSL_DEBUG_MSG( 3, ( "before encrypt: msglen = %d, " "including %d bytes of padding", ssl->out_msglen, 0 ) ); SSL_DEBUG_BUF( 4, "before encrypt: output payload", ssl->out_msg, ssl->out_msglen ); /* * Adjust for tag */ ssl->out_msglen += 16; gcm_crypt_and_tag( (gcm_context *) ssl->transform_out->ctx_enc, GCM_ENCRYPT, enc_msglen, ssl->transform_out->iv_enc, ssl->transform_out->ivlen, add_data, 13, enc_msg, enc_msg, 16, enc_msg + enc_msglen ); SSL_DEBUG_BUF( 4, "after encrypt: tag", enc_msg + enc_msglen, 16 ); } else #endif return( ret ); } else { unsigned char *enc_msg; size_t enc_msglen; padlen = ssl->transform_out->ivlen - ( ssl->out_msglen + 1 ) % ssl->transform_out->ivlen; if( padlen == ssl->transform_out->ivlen ) padlen = 0; for( i = 0; i <= padlen; i++ ) ssl->out_msg[ssl->out_msglen + i] = (unsigned char) padlen; ssl->out_msglen += padlen + 1; enc_msglen = ssl->out_msglen; enc_msg = ssl->out_msg; /* * Prepend per-record IV for block cipher in TLS v1.1 and up as per * Method 1 (6.2.3.2. in RFC4346 and RFC5246) */ if( ssl->minor_ver >= SSL_MINOR_VERSION_2 ) { /* * Generate IV */ int ret = ssl->f_rng( ssl->p_rng, ssl->transform_out->iv_enc, ssl->transform_out->ivlen ); if( ret != 0 ) return( ret ); /* * Shift message for ivlen bytes and prepend IV */ memmove( ssl->out_msg + ssl->transform_out->ivlen, ssl->out_msg, ssl->out_msglen ); memcpy( ssl->out_msg, ssl->transform_out->iv_enc, ssl->transform_out->ivlen ); /* * Fix pointer positions and message length with added IV */ enc_msg = ssl->out_msg + ssl->transform_out->ivlen; enc_msglen = ssl->out_msglen; ssl->out_msglen += ssl->transform_out->ivlen; } SSL_DEBUG_MSG( 3, ( "before encrypt: msglen = %d, " "including %d bytes of IV and %d bytes of padding", ssl->out_msglen, ssl->transform_out->ivlen, padlen + 1 ) ); SSL_DEBUG_BUF( 4, "before encrypt: output payload", ssl->out_msg, ssl->out_msglen ); switch( ssl->transform_out->ivlen ) { #if defined(POLARSSL_DES_C) case 8: #if defined(POLARSSL_ENABLE_WEAK_CIPHERSUITES) if( ssl->session_out->ciphersuite == SSL_RSA_DES_SHA || ssl->session_out->ciphersuite == SSL_EDH_RSA_DES_SHA ) { des_crypt_cbc( (des_context *) ssl->transform_out->ctx_enc, DES_ENCRYPT, enc_msglen, ssl->transform_out->iv_enc, enc_msg, enc_msg ); } else #endif des3_crypt_cbc( (des3_context *) ssl->transform_out->ctx_enc, DES_ENCRYPT, enc_msglen, ssl->transform_out->iv_enc, enc_msg, enc_msg ); break; #endif case 16: #if defined(POLARSSL_AES_C) if ( ssl->session_out->ciphersuite == SSL_RSA_AES_128_SHA || ssl->session_out->ciphersuite == SSL_EDH_RSA_AES_128_SHA || ssl->session_out->ciphersuite == SSL_RSA_AES_256_SHA || ssl->session_out->ciphersuite == SSL_EDH_RSA_AES_256_SHA || ssl->session_out->ciphersuite == SSL_RSA_AES_128_SHA256 || ssl->session_out->ciphersuite == SSL_EDH_RSA_AES_128_SHA256 || ssl->session_out->ciphersuite == SSL_RSA_AES_256_SHA256 || ssl->session_out->ciphersuite == SSL_EDH_RSA_AES_256_SHA256 ) { aes_crypt_cbc( (aes_context *) ssl->transform_out->ctx_enc, AES_ENCRYPT, enc_msglen, ssl->transform_out->iv_enc, enc_msg, enc_msg); break; } #endif #if defined(POLARSSL_CAMELLIA_C) if ( ssl->session_out->ciphersuite == SSL_RSA_CAMELLIA_128_SHA || ssl->session_out->ciphersuite == SSL_EDH_RSA_CAMELLIA_128_SHA || ssl->session_out->ciphersuite == SSL_RSA_CAMELLIA_256_SHA || ssl->session_out->ciphersuite == SSL_EDH_RSA_CAMELLIA_256_SHA || ssl->session_out->ciphersuite == SSL_RSA_CAMELLIA_128_SHA256 || ssl->session_out->ciphersuite == SSL_EDH_RSA_CAMELLIA_128_SHA256 || ssl->session_out->ciphersuite == SSL_RSA_CAMELLIA_256_SHA256 || ssl->session_out->ciphersuite == SSL_EDH_RSA_CAMELLIA_256_SHA256 ) { camellia_crypt_cbc( (camellia_context *) ssl->transform_out->ctx_enc, CAMELLIA_ENCRYPT, enc_msglen, ssl->transform_out->iv_enc, enc_msg, enc_msg ); break; } #endif default: return( POLARSSL_ERR_SSL_FEATURE_UNAVAILABLE ); } } for( i = 8; i > 0; i-- ) if( ++ssl->out_ctr[i - 1] != 0 ) break; SSL_DEBUG_MSG( 2, ( "<= encrypt buf" ) ); return( 0 ); } /* * TODO: Use digest version when integrated! */ #define POLARSSL_SSL_MAX_MAC_SIZE 32 static int ssl_decrypt_buf( ssl_context *ssl ) { size_t i, padlen; unsigned char tmp[POLARSSL_SSL_MAX_MAC_SIZE]; SSL_DEBUG_MSG( 2, ( "=> decrypt buf" ) ); if( ssl->in_msglen < ssl->transform_in->minlen ) { SSL_DEBUG_MSG( 1, ( "in_msglen (%d) < minlen (%d)", ssl->in_msglen, ssl->transform_in->minlen ) ); return( POLARSSL_ERR_SSL_INVALID_MAC ); } if( ssl->transform_in->ivlen == 0 ) { #if defined(POLARSSL_ARC4_C) padlen = 0; if( ssl->session_in->ciphersuite == SSL_RSA_RC4_128_MD5 || ssl->session_in->ciphersuite == SSL_RSA_RC4_128_SHA ) { arc4_crypt( (arc4_context *) ssl->transform_in->ctx_dec, ssl->in_msglen, ssl->in_msg, ssl->in_msg ); } else #endif #if defined(POLARSSL_CIPHER_NULL_CIPHER) if( ssl->session_in->ciphersuite == SSL_RSA_NULL_MD5 || ssl->session_in->ciphersuite == SSL_RSA_NULL_SHA || ssl->session_in->ciphersuite == SSL_RSA_NULL_SHA256 ) { } else #endif return( POLARSSL_ERR_SSL_FEATURE_UNAVAILABLE ); } else if( ssl->transform_in->ivlen == 12 ) { unsigned char *dec_msg; unsigned char *dec_msg_result; size_t dec_msglen; unsigned char add_data[13]; int ret = POLARSSL_ERR_SSL_FEATURE_UNAVAILABLE; padlen = 0; #if defined(POLARSSL_AES_C) && defined(POLARSSL_GCM_C) if( ssl->session_in->ciphersuite == SSL_RSA_AES_128_GCM_SHA256 || ssl->session_in->ciphersuite == SSL_EDH_RSA_AES_128_GCM_SHA256 || ssl->session_in->ciphersuite == SSL_RSA_AES_256_GCM_SHA384 || ssl->session_in->ciphersuite == SSL_EDH_RSA_AES_256_GCM_SHA384 ) { dec_msglen = ssl->in_msglen - ( ssl->transform_in->ivlen - ssl->transform_in->fixed_ivlen ); dec_msglen -= 16; dec_msg = ssl->in_msg + ( ssl->transform_in->ivlen - ssl->transform_in->fixed_ivlen ); dec_msg_result = ssl->in_msg; ssl->in_msglen = dec_msglen; memcpy( add_data, ssl->in_ctr, 8 ); add_data[8] = ssl->in_msgtype; add_data[9] = ssl->major_ver; add_data[10] = ssl->minor_ver; add_data[11] = ( ssl->in_msglen >> 8 ) & 0xFF; add_data[12] = ssl->in_msglen & 0xFF; SSL_DEBUG_BUF( 4, "additional data used for AEAD", add_data, 13 ); memcpy( ssl->transform_in->iv_dec + ssl->transform_in->fixed_ivlen, ssl->in_msg, ssl->transform_in->ivlen - ssl->transform_in->fixed_ivlen ); SSL_DEBUG_BUF( 4, "IV used", ssl->transform_in->iv_dec, ssl->transform_in->ivlen ); SSL_DEBUG_BUF( 4, "TAG used", dec_msg + dec_msglen, 16 ); memcpy( ssl->transform_in->iv_dec + ssl->transform_in->fixed_ivlen, ssl->in_msg, ssl->transform_in->ivlen - ssl->transform_in->fixed_ivlen ); ret = gcm_auth_decrypt( (gcm_context *) ssl->transform_in->ctx_dec, dec_msglen, ssl->transform_in->iv_dec, ssl->transform_in->ivlen, add_data, 13, dec_msg + dec_msglen, 16, dec_msg, dec_msg_result ); if( ret != 0 ) { SSL_DEBUG_MSG( 1, ( "AEAD decrypt failed on validation (ret = -0x%02x)", -ret ) ); return( POLARSSL_ERR_SSL_INVALID_MAC ); } } else #endif return( ret ); } else { unsigned char *dec_msg; unsigned char *dec_msg_result; size_t dec_msglen; /* * Decrypt and check the padding */ if( ssl->in_msglen % ssl->transform_in->ivlen != 0 ) { SSL_DEBUG_MSG( 1, ( "msglen (%d) %% ivlen (%d) != 0", ssl->in_msglen, ssl->transform_in->ivlen ) ); return( POLARSSL_ERR_SSL_INVALID_MAC ); } dec_msglen = ssl->in_msglen; dec_msg = ssl->in_msg; dec_msg_result = ssl->in_msg; /* * Initialize for prepended IV for block cipher in TLS v1.1 and up */ if( ssl->minor_ver >= SSL_MINOR_VERSION_2 ) { dec_msg += ssl->transform_in->ivlen; dec_msglen -= ssl->transform_in->ivlen; ssl->in_msglen -= ssl->transform_in->ivlen; for( i = 0; i < ssl->transform_in->ivlen; i++ ) ssl->transform_in->iv_dec[i] = ssl->in_msg[i]; } switch( ssl->transform_in->ivlen ) { #if defined(POLARSSL_DES_C) case 8: #if defined(POLARSSL_ENABLE_WEAK_CIPHERSUITES) if( ssl->session_in->ciphersuite == SSL_RSA_DES_SHA || ssl->session_in->ciphersuite == SSL_EDH_RSA_DES_SHA ) { des_crypt_cbc( (des_context *) ssl->transform_in->ctx_dec, DES_DECRYPT, dec_msglen, ssl->transform_in->iv_dec, dec_msg, dec_msg_result ); } else #endif des3_crypt_cbc( (des3_context *) ssl->transform_in->ctx_dec, DES_DECRYPT, dec_msglen, ssl->transform_in->iv_dec, dec_msg, dec_msg_result ); break; #endif case 16: #if defined(POLARSSL_AES_C) if ( ssl->session_in->ciphersuite == SSL_RSA_AES_128_SHA || ssl->session_in->ciphersuite == SSL_EDH_RSA_AES_128_SHA || ssl->session_in->ciphersuite == SSL_RSA_AES_256_SHA || ssl->session_in->ciphersuite == SSL_EDH_RSA_AES_256_SHA || ssl->session_in->ciphersuite == SSL_RSA_AES_128_SHA256 || ssl->session_in->ciphersuite == SSL_EDH_RSA_AES_128_SHA256 || ssl->session_in->ciphersuite == SSL_RSA_AES_256_SHA256 || ssl->session_in->ciphersuite == SSL_EDH_RSA_AES_256_SHA256 ) { aes_crypt_cbc( (aes_context *) ssl->transform_in->ctx_dec, AES_DECRYPT, dec_msglen, ssl->transform_in->iv_dec, dec_msg, dec_msg_result ); break; } #endif #if defined(POLARSSL_CAMELLIA_C) if ( ssl->session_in->ciphersuite == SSL_RSA_CAMELLIA_128_SHA || ssl->session_in->ciphersuite == SSL_EDH_RSA_CAMELLIA_128_SHA || ssl->session_in->ciphersuite == SSL_RSA_CAMELLIA_256_SHA || ssl->session_in->ciphersuite == SSL_EDH_RSA_CAMELLIA_256_SHA || ssl->session_in->ciphersuite == SSL_RSA_CAMELLIA_128_SHA256 || ssl->session_in->ciphersuite == SSL_EDH_RSA_CAMELLIA_128_SHA256 || ssl->session_in->ciphersuite == SSL_RSA_CAMELLIA_256_SHA256 || ssl->session_in->ciphersuite == SSL_EDH_RSA_CAMELLIA_256_SHA256 ) { camellia_crypt_cbc( (camellia_context *) ssl->transform_in->ctx_dec, CAMELLIA_DECRYPT, dec_msglen, ssl->transform_in->iv_dec, dec_msg, dec_msg_result ); break; } #endif default: return( POLARSSL_ERR_SSL_FEATURE_UNAVAILABLE ); } padlen = 1 + ssl->in_msg[ssl->in_msglen - 1]; if( ssl->minor_ver == SSL_MINOR_VERSION_0 ) { if( padlen > ssl->transform_in->ivlen ) { SSL_DEBUG_MSG( 1, ( "bad padding length: is %d, " "should be no more than %d", padlen, ssl->transform_in->ivlen ) ); padlen = 0; } } else { /* * TLSv1: always check the padding */ for( i = 1; i <= padlen; i++ ) { if( ssl->in_msg[ssl->in_msglen - i] != padlen - 1 ) { SSL_DEBUG_MSG( 1, ( "bad padding byte: should be " "%02x, but is %02x", padlen - 1, ssl->in_msg[ssl->in_msglen - i] ) ); padlen = 0; } } } } SSL_DEBUG_BUF( 4, "raw buffer after decryption", ssl->in_msg, ssl->in_msglen ); /* * Always compute the MAC (RFC4346, CBCTIME). */ if( ssl->in_msglen < ssl->transform_in->maclen + padlen ) { SSL_DEBUG_MSG( 1, ( "msglen (%d) < maclen (%d) + padlen (%d)", ssl->in_msglen, ssl->transform_in->maclen, padlen ) ); return( POLARSSL_ERR_SSL_INVALID_MAC ); } ssl->in_msglen -= ( ssl->transform_in->maclen + padlen ); ssl->in_hdr[3] = (unsigned char)( ssl->in_msglen >> 8 ); ssl->in_hdr[4] = (unsigned char)( ssl->in_msglen ); memcpy( tmp, ssl->in_msg + ssl->in_msglen, POLARSSL_SSL_MAX_MAC_SIZE ); if( ssl->minor_ver == SSL_MINOR_VERSION_0 ) { if( ssl->transform_in->maclen == 16 ) ssl_mac_md5( ssl->transform_in->mac_dec, ssl->in_msg, ssl->in_msglen, ssl->in_ctr, ssl->in_msgtype ); else if( ssl->transform_in->maclen == 20 ) ssl_mac_sha1( ssl->transform_in->mac_dec, ssl->in_msg, ssl->in_msglen, ssl->in_ctr, ssl->in_msgtype ); else if( ssl->transform_in->maclen == 32 ) ssl_mac_sha2( ssl->transform_in->mac_dec, ssl->in_msg, ssl->in_msglen, ssl->in_ctr, ssl->in_msgtype ); else if( ssl->transform_in->maclen != 0 ) { SSL_DEBUG_MSG( 1, ( "invalid MAC len: %d", ssl->transform_in->maclen ) ); return( POLARSSL_ERR_SSL_FEATURE_UNAVAILABLE ); } } else { if( ssl->transform_in->maclen == 16 ) md5_hmac( ssl->transform_in->mac_dec, 16, ssl->in_ctr, ssl->in_msglen + 13, ssl->in_msg + ssl->in_msglen ); else if( ssl->transform_in->maclen == 20 ) sha1_hmac( ssl->transform_in->mac_dec, 20, ssl->in_ctr, ssl->in_msglen + 13, ssl->in_msg + ssl->in_msglen ); else if( ssl->transform_in->maclen == 32 ) sha2_hmac( ssl->transform_in->mac_dec, 32, ssl->in_ctr, ssl->in_msglen + 13, ssl->in_msg + ssl->in_msglen, 0 ); else if( ssl->transform_in->maclen != 0 ) { SSL_DEBUG_MSG( 1, ( "invalid MAC len: %d", ssl->transform_in->maclen ) ); return( POLARSSL_ERR_SSL_FEATURE_UNAVAILABLE ); } } SSL_DEBUG_BUF( 4, "message mac", tmp, ssl->transform_in->maclen ); SSL_DEBUG_BUF( 4, "computed mac", ssl->in_msg + ssl->in_msglen, ssl->transform_in->maclen ); if( memcmp( tmp, ssl->in_msg + ssl->in_msglen, ssl->transform_in->maclen ) != 0 ) { SSL_DEBUG_MSG( 1, ( "message mac does not match" ) ); return( POLARSSL_ERR_SSL_INVALID_MAC ); } /* * Finally check the padding length; bad padding * will produce the same error as an invalid MAC. */ if( ssl->transform_in->ivlen != 0 && ssl->transform_in->ivlen != 12 && padlen == 0 ) return( POLARSSL_ERR_SSL_INVALID_MAC ); if( ssl->in_msglen == 0 ) { ssl->nb_zero++; /* * Three or more empty messages may be a DoS attack * (excessive CPU consumption). */ if( ssl->nb_zero > 3 ) { SSL_DEBUG_MSG( 1, ( "received four consecutive empty " "messages, possible DoS attack" ) ); return( POLARSSL_ERR_SSL_INVALID_MAC ); } } else ssl->nb_zero = 0; for( i = 8; i > 0; i-- ) if( ++ssl->in_ctr[i - 1] != 0 ) break; SSL_DEBUG_MSG( 2, ( "<= decrypt buf" ) ); return( 0 ); } #if defined(POLARSSL_ZLIB_SUPPORT) /* * Compression/decompression functions */ static int ssl_compress_buf( ssl_context *ssl ) { int ret; unsigned char *msg_post = ssl->out_msg; size_t len_pre = ssl->out_msglen; unsigned char *msg_pre; SSL_DEBUG_MSG( 2, ( "=> compress buf" ) ); msg_pre = (unsigned char*) malloc( len_pre ); if( msg_pre == NULL ) { SSL_DEBUG_MSG( 1, ( "malloc(%d bytes) failed", len_pre ) ); return( POLARSSL_ERR_SSL_MALLOC_FAILED ); } memcpy( msg_pre, ssl->out_msg, len_pre ); SSL_DEBUG_MSG( 3, ( "before compression: msglen = %d, ", ssl->out_msglen ) ); SSL_DEBUG_BUF( 4, "before compression: output payload", ssl->out_msg, ssl->out_msglen ); ssl->transform_out->ctx_deflate.next_in = msg_pre; ssl->transform_out->ctx_deflate.avail_in = len_pre; ssl->transform_out->ctx_deflate.next_out = msg_post; ssl->transform_out->ctx_deflate.avail_out = SSL_BUFFER_LEN; ret = deflate( &ssl->transform_out->ctx_deflate, Z_SYNC_FLUSH ); if( ret != Z_OK ) { SSL_DEBUG_MSG( 1, ( "failed to perform compression (%d)", ret ) ); return( POLARSSL_ERR_SSL_COMPRESSION_FAILED ); } ssl->out_msglen = SSL_BUFFER_LEN - ssl->transform_out->ctx_deflate.avail_out; free( msg_pre ); SSL_DEBUG_MSG( 3, ( "after compression: msglen = %d, ", ssl->out_msglen ) ); SSL_DEBUG_BUF( 4, "after compression: output payload", ssl->out_msg, ssl->out_msglen ); SSL_DEBUG_MSG( 2, ( "<= compress buf" ) ); return( 0 ); } static int ssl_decompress_buf( ssl_context *ssl ) { int ret; unsigned char *msg_post = ssl->in_msg; size_t len_pre = ssl->in_msglen; unsigned char *msg_pre; SSL_DEBUG_MSG( 2, ( "=> decompress buf" ) ); msg_pre = (unsigned char*) malloc( len_pre ); if( msg_pre == NULL ) { SSL_DEBUG_MSG( 1, ( "malloc(%d bytes) failed", len_pre ) ); return( POLARSSL_ERR_SSL_MALLOC_FAILED ); } memcpy( msg_pre, ssl->in_msg, len_pre ); SSL_DEBUG_MSG( 3, ( "before decompression: msglen = %d, ", ssl->in_msglen ) ); SSL_DEBUG_BUF( 4, "before decompression: input payload", ssl->in_msg, ssl->in_msglen ); ssl->transform_in->ctx_inflate.next_in = msg_pre; ssl->transform_in->ctx_inflate.avail_in = len_pre; ssl->transform_in->ctx_inflate.next_out = msg_post; ssl->transform_in->ctx_inflate.avail_out = SSL_MAX_CONTENT_LEN; ret = inflate( &ssl->transform_in->ctx_inflate, Z_SYNC_FLUSH ); if( ret != Z_OK ) { SSL_DEBUG_MSG( 1, ( "failed to perform decompression (%d)", ret ) ); return( POLARSSL_ERR_SSL_COMPRESSION_FAILED ); } ssl->in_msglen = SSL_MAX_CONTENT_LEN - ssl->transform_in->ctx_inflate.avail_out; free( msg_pre ); SSL_DEBUG_MSG( 3, ( "after decompression: msglen = %d, ", ssl->in_msglen ) ); SSL_DEBUG_BUF( 4, "after decompression: input payload", ssl->in_msg, ssl->in_msglen ); SSL_DEBUG_MSG( 2, ( "<= decompress buf" ) ); return( 0 ); } #endif /* POLARSSL_ZLIB_SUPPORT */ /* * Fill the input message buffer */ int ssl_fetch_input( ssl_context *ssl, size_t nb_want ) { int ret; size_t len; SSL_DEBUG_MSG( 2, ( "=> fetch input" ) ); while( ssl->in_left < nb_want ) { len = nb_want - ssl->in_left; ret = ssl->f_recv( ssl->p_recv, ssl->in_hdr + ssl->in_left, len ); SSL_DEBUG_MSG( 2, ( "in_left: %d, nb_want: %d", ssl->in_left, nb_want ) ); SSL_DEBUG_RET( 2, "ssl->f_recv", ret ); if( ret == 0 ) return( POLARSSL_ERR_SSL_CONN_EOF ); if( ret < 0 ) return( ret ); ssl->in_left += ret; } SSL_DEBUG_MSG( 2, ( "<= fetch input" ) ); return( 0 ); } /* * Flush any data not yet written */ int ssl_flush_output( ssl_context *ssl ) { int ret; unsigned char *buf; SSL_DEBUG_MSG( 2, ( "=> flush output" ) ); while( ssl->out_left > 0 ) { SSL_DEBUG_MSG( 2, ( "message length: %d, out_left: %d", 5 + ssl->out_msglen, ssl->out_left ) ); if( ssl->out_msglen < ssl->out_left ) { size_t header_left = ssl->out_left - ssl->out_msglen; buf = ssl->out_hdr + 5 - header_left; ret = ssl->f_send( ssl->p_send, buf, header_left ); SSL_DEBUG_RET( 2, "ssl->f_send (header)", ret ); if( ret <= 0 ) return( ret ); ssl->out_left -= ret; } buf = ssl->out_msg + ssl->out_msglen - ssl->out_left; ret = ssl->f_send( ssl->p_send, buf, ssl->out_left ); SSL_DEBUG_RET( 2, "ssl->f_send", ret ); if( ret <= 0 ) return( ret ); ssl->out_left -= ret; } SSL_DEBUG_MSG( 2, ( "<= flush output" ) ); return( 0 ); } /* * Record layer functions */ int ssl_write_record( ssl_context *ssl ) { int ret, done = 0; size_t len = ssl->out_msglen; SSL_DEBUG_MSG( 2, ( "=> write record" ) ); if( ssl->out_msgtype == SSL_MSG_HANDSHAKE ) { ssl->out_msg[1] = (unsigned char)( ( len - 4 ) >> 16 ); ssl->out_msg[2] = (unsigned char)( ( len - 4 ) >> 8 ); ssl->out_msg[3] = (unsigned char)( ( len - 4 ) ); ssl->handshake->update_checksum( ssl, ssl->out_msg, len ); } #if defined(POLARSSL_ZLIB_SUPPORT) if( ssl->transform_out != NULL && ssl->session_out->compression == SSL_COMPRESS_DEFLATE ) { if( ( ret = ssl_compress_buf( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_compress_buf", ret ); return( ret ); } len = ssl->out_msglen; } #endif /*POLARSSL_ZLIB_SUPPORT */ #if defined(POLARSSL_SSL_HW_RECORD_ACCEL) if( ssl_hw_record_write != NULL) { SSL_DEBUG_MSG( 2, ( "going for ssl_hw_record_write()" ) ); ret = ssl_hw_record_write( ssl ); if( ret != 0 && ret != POLARSSL_ERR_SSL_HW_ACCEL_FALLTHROUGH ) { SSL_DEBUG_RET( 1, "ssl_hw_record_write", ret ); return POLARSSL_ERR_SSL_HW_ACCEL_FAILED; } done = 1; } #endif if( !done ) { ssl->out_hdr[0] = (unsigned char) ssl->out_msgtype; ssl->out_hdr[1] = (unsigned char) ssl->major_ver; ssl->out_hdr[2] = (unsigned char) ssl->minor_ver; ssl->out_hdr[3] = (unsigned char)( len >> 8 ); ssl->out_hdr[4] = (unsigned char)( len ); if( ssl->transform_out != NULL ) { if( ( ret = ssl_encrypt_buf( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_encrypt_buf", ret ); return( ret ); } len = ssl->out_msglen; ssl->out_hdr[3] = (unsigned char)( len >> 8 ); ssl->out_hdr[4] = (unsigned char)( len ); } ssl->out_left = 5 + ssl->out_msglen; SSL_DEBUG_MSG( 3, ( "output record: msgtype = %d, " "version = [%d:%d], msglen = %d", ssl->out_hdr[0], ssl->out_hdr[1], ssl->out_hdr[2], ( ssl->out_hdr[3] << 8 ) | ssl->out_hdr[4] ) ); SSL_DEBUG_BUF( 4, "output record header sent to network", ssl->out_hdr, 5 ); SSL_DEBUG_BUF( 4, "output record sent to network", ssl->out_hdr + 32, ssl->out_msglen ); } if( ( ret = ssl_flush_output( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_flush_output", ret ); return( ret ); } SSL_DEBUG_MSG( 2, ( "<= write record" ) ); return( 0 ); } int ssl_read_record( ssl_context *ssl ) { int ret, done = 0; SSL_DEBUG_MSG( 2, ( "=> read record" ) ); if( ssl->in_hslen != 0 && ssl->in_hslen < ssl->in_msglen ) { /* * Get next Handshake message in the current record */ ssl->in_msglen -= ssl->in_hslen; memmove( ssl->in_msg, ssl->in_msg + ssl->in_hslen, ssl->in_msglen ); ssl->in_hslen = 4; ssl->in_hslen += ( ssl->in_msg[2] << 8 ) | ssl->in_msg[3]; SSL_DEBUG_MSG( 3, ( "handshake message: msglen =" " %d, type = %d, hslen = %d", ssl->in_msglen, ssl->in_msg[0], ssl->in_hslen ) ); if( ssl->in_msglen < 4 || ssl->in_msg[1] != 0 ) { SSL_DEBUG_MSG( 1, ( "bad handshake length" ) ); return( POLARSSL_ERR_SSL_INVALID_RECORD ); } if( ssl->in_msglen < ssl->in_hslen ) { SSL_DEBUG_MSG( 1, ( "bad handshake length" ) ); return( POLARSSL_ERR_SSL_INVALID_RECORD ); } ssl->handshake->update_checksum( ssl, ssl->in_msg, ssl->in_hslen ); return( 0 ); } ssl->in_hslen = 0; /* * Read the record header and validate it */ if( ( ret = ssl_fetch_input( ssl, 5 ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_fetch_input", ret ); return( ret ); } ssl->in_msgtype = ssl->in_hdr[0]; ssl->in_msglen = ( ssl->in_hdr[3] << 8 ) | ssl->in_hdr[4]; SSL_DEBUG_MSG( 3, ( "input record: msgtype = %d, " "version = [%d:%d], msglen = %d", ssl->in_hdr[0], ssl->in_hdr[1], ssl->in_hdr[2], ( ssl->in_hdr[3] << 8 ) | ssl->in_hdr[4] ) ); if( ssl->in_hdr[1] != ssl->major_ver ) { SSL_DEBUG_MSG( 1, ( "major version mismatch" ) ); return( POLARSSL_ERR_SSL_INVALID_RECORD ); } if( ssl->in_hdr[2] > ssl->max_minor_ver ) { SSL_DEBUG_MSG( 1, ( "minor version mismatch" ) ); return( POLARSSL_ERR_SSL_INVALID_RECORD ); } /* * Make sure the message length is acceptable */ if( ssl->transform_in == NULL ) { if( ssl->in_msglen < 1 || ssl->in_msglen > SSL_MAX_CONTENT_LEN ) { SSL_DEBUG_MSG( 1, ( "bad message length" ) ); return( POLARSSL_ERR_SSL_INVALID_RECORD ); } } else { if( ssl->in_msglen < ssl->transform_in->minlen ) { SSL_DEBUG_MSG( 1, ( "bad message length" ) ); return( POLARSSL_ERR_SSL_INVALID_RECORD ); } if( ssl->minor_ver == SSL_MINOR_VERSION_0 && ssl->in_msglen > ssl->transform_in->minlen + SSL_MAX_CONTENT_LEN ) { SSL_DEBUG_MSG( 1, ( "bad message length" ) ); return( POLARSSL_ERR_SSL_INVALID_RECORD ); } /* * TLS encrypted messages can have up to 256 bytes of padding */ if( ssl->minor_ver >= SSL_MINOR_VERSION_1 && ssl->in_msglen > ssl->transform_in->minlen + SSL_MAX_CONTENT_LEN + 256 ) { SSL_DEBUG_MSG( 1, ( "bad message length" ) ); return( POLARSSL_ERR_SSL_INVALID_RECORD ); } } /* * Read and optionally decrypt the message contents */ if( ( ret = ssl_fetch_input( ssl, 5 + ssl->in_msglen ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_fetch_input", ret ); return( ret ); } SSL_DEBUG_BUF( 4, "input record from network", ssl->in_hdr, 5 + ssl->in_msglen ); #if defined(POLARSSL_SSL_HW_RECORD_ACCEL) if( ssl_hw_record_read != NULL) { SSL_DEBUG_MSG( 2, ( "going for ssl_hw_record_read()" ) ); ret = ssl_hw_record_read( ssl ); if( ret != 0 && ret != POLARSSL_ERR_SSL_HW_ACCEL_FALLTHROUGH ) { SSL_DEBUG_RET( 1, "ssl_hw_record_read", ret ); return POLARSSL_ERR_SSL_HW_ACCEL_FAILED; } done = 1; } #endif if( !done && ssl->transform_in != NULL ) { if( ( ret = ssl_decrypt_buf( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_decrypt_buf", ret ); return( ret ); } SSL_DEBUG_BUF( 4, "input payload after decrypt", ssl->in_msg, ssl->in_msglen ); if( ssl->in_msglen > SSL_MAX_CONTENT_LEN ) { SSL_DEBUG_MSG( 1, ( "bad message length" ) ); return( POLARSSL_ERR_SSL_INVALID_RECORD ); } } #if defined(POLARSSL_ZLIB_SUPPORT) if( ssl->transform_in != NULL && ssl->session_in->compression == SSL_COMPRESS_DEFLATE ) { if( ( ret = ssl_decompress_buf( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_decompress_buf", ret ); return( ret ); } ssl->in_hdr[3] = (unsigned char)( ssl->in_msglen >> 8 ); ssl->in_hdr[4] = (unsigned char)( ssl->in_msglen ); } #endif /* POLARSSL_ZLIB_SUPPORT */ if( ssl->in_msgtype != SSL_MSG_HANDSHAKE && ssl->in_msgtype != SSL_MSG_ALERT && ssl->in_msgtype != SSL_MSG_CHANGE_CIPHER_SPEC && ssl->in_msgtype != SSL_MSG_APPLICATION_DATA ) { SSL_DEBUG_MSG( 1, ( "unknown record type" ) ); if( ( ret = ssl_send_alert_message( ssl, SSL_ALERT_LEVEL_FATAL, SSL_ALERT_MSG_UNEXPECTED_MESSAGE ) ) != 0 ) { return( ret ); } return( POLARSSL_ERR_SSL_INVALID_RECORD ); } if( ssl->in_msgtype == SSL_MSG_HANDSHAKE ) { ssl->in_hslen = 4; ssl->in_hslen += ( ssl->in_msg[2] << 8 ) | ssl->in_msg[3]; SSL_DEBUG_MSG( 3, ( "handshake message: msglen =" " %d, type = %d, hslen = %d", ssl->in_msglen, ssl->in_msg[0], ssl->in_hslen ) ); /* * Additional checks to validate the handshake header */ if( ssl->in_msglen < 4 || ssl->in_msg[1] != 0 ) { SSL_DEBUG_MSG( 1, ( "bad handshake length" ) ); return( POLARSSL_ERR_SSL_INVALID_RECORD ); } if( ssl->in_msglen < ssl->in_hslen ) { SSL_DEBUG_MSG( 1, ( "bad handshake length" ) ); return( POLARSSL_ERR_SSL_INVALID_RECORD ); } if( ssl->state != SSL_HANDSHAKE_OVER ) ssl->handshake->update_checksum( ssl, ssl->in_msg, ssl->in_hslen ); } if( ssl->in_msgtype == SSL_MSG_ALERT ) { SSL_DEBUG_MSG( 2, ( "got an alert message, type: [%d:%d]", ssl->in_msg[0], ssl->in_msg[1] ) ); /* * Ignore non-fatal alerts, except close_notify */ if( ssl->in_msg[0] == SSL_ALERT_LEVEL_FATAL ) { SSL_DEBUG_MSG( 1, ( "is a fatal alert message (msg %d)", ssl->in_msg[1] ) ); /** * Subtract from error code as ssl->in_msg[1] is 7-bit positive * error identifier. */ return( POLARSSL_ERR_SSL_FATAL_ALERT_MESSAGE ); } if( ssl->in_msg[0] == SSL_ALERT_LEVEL_WARNING && ssl->in_msg[1] == SSL_ALERT_MSG_CLOSE_NOTIFY ) { SSL_DEBUG_MSG( 2, ( "is a close notify message" ) ); return( POLARSSL_ERR_SSL_PEER_CLOSE_NOTIFY ); } } ssl->in_left = 0; SSL_DEBUG_MSG( 2, ( "<= read record" ) ); return( 0 ); } int ssl_send_fatal_handshake_failure( ssl_context *ssl ) { int ret; if( ( ret = ssl_send_alert_message( ssl, SSL_ALERT_LEVEL_FATAL, SSL_ALERT_MSG_HANDSHAKE_FAILURE ) ) != 0 ) { return( ret ); } return( 0 ); } int ssl_send_alert_message( ssl_context *ssl, unsigned char level, unsigned char message ) { int ret; SSL_DEBUG_MSG( 2, ( "=> send alert message" ) ); ssl->out_msgtype = SSL_MSG_ALERT; ssl->out_msglen = 2; ssl->out_msg[0] = level; ssl->out_msg[1] = message; if( ( ret = ssl_write_record( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_write_record", ret ); return( ret ); } SSL_DEBUG_MSG( 2, ( "<= send alert message" ) ); return( 0 ); } /* * Handshake functions */ int ssl_write_certificate( ssl_context *ssl ) { int ret; size_t i, n; const x509_cert *crt; SSL_DEBUG_MSG( 2, ( "=> write certificate" ) ); if( ssl->endpoint == SSL_IS_CLIENT ) { if( ssl->client_auth == 0 ) { SSL_DEBUG_MSG( 2, ( "<= skip write certificate" ) ); ssl->state++; return( 0 ); } /* * If using SSLv3 and got no cert, send an Alert message * (otherwise an empty Certificate message will be sent). */ if( ssl->own_cert == NULL && ssl->minor_ver == SSL_MINOR_VERSION_0 ) { ssl->out_msglen = 2; ssl->out_msgtype = SSL_MSG_ALERT; ssl->out_msg[0] = SSL_ALERT_LEVEL_WARNING; ssl->out_msg[1] = SSL_ALERT_MSG_NO_CERT; SSL_DEBUG_MSG( 2, ( "got no certificate to send" ) ); goto write_msg; } } else /* SSL_IS_SERVER */ { if( ssl->own_cert == NULL ) { SSL_DEBUG_MSG( 1, ( "got no certificate to send" ) ); return( POLARSSL_ERR_SSL_CERTIFICATE_REQUIRED ); } } SSL_DEBUG_CRT( 3, "own certificate", ssl->own_cert ); /* * 0 . 0 handshake type * 1 . 3 handshake length * 4 . 6 length of all certs * 7 . 9 length of cert. 1 * 10 . n-1 peer certificate * n . n+2 length of cert. 2 * n+3 . ... upper level cert, etc. */ i = 7; crt = ssl->own_cert; while( crt != NULL ) { n = crt->raw.len; if( i + 3 + n > SSL_MAX_CONTENT_LEN ) { SSL_DEBUG_MSG( 1, ( "certificate too large, %d > %d", i + 3 + n, SSL_MAX_CONTENT_LEN ) ); return( POLARSSL_ERR_SSL_CERTIFICATE_TOO_LARGE ); } ssl->out_msg[i ] = (unsigned char)( n >> 16 ); ssl->out_msg[i + 1] = (unsigned char)( n >> 8 ); ssl->out_msg[i + 2] = (unsigned char)( n ); i += 3; memcpy( ssl->out_msg + i, crt->raw.p, n ); i += n; crt = crt->next; } ssl->out_msg[4] = (unsigned char)( ( i - 7 ) >> 16 ); ssl->out_msg[5] = (unsigned char)( ( i - 7 ) >> 8 ); ssl->out_msg[6] = (unsigned char)( ( i - 7 ) ); ssl->out_msglen = i; ssl->out_msgtype = SSL_MSG_HANDSHAKE; ssl->out_msg[0] = SSL_HS_CERTIFICATE; write_msg: ssl->state++; if( ( ret = ssl_write_record( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_write_record", ret ); return( ret ); } SSL_DEBUG_MSG( 2, ( "<= write certificate" ) ); return( 0 ); } int ssl_parse_certificate( ssl_context *ssl ) { int ret; size_t i, n; SSL_DEBUG_MSG( 2, ( "=> parse certificate" ) ); if( ssl->endpoint == SSL_IS_SERVER && ssl->authmode == SSL_VERIFY_NONE ) { ssl->verify_result = BADCERT_SKIP_VERIFY; SSL_DEBUG_MSG( 2, ( "<= skip parse certificate" ) ); ssl->state++; return( 0 ); } if( ( ret = ssl_read_record( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_read_record", ret ); return( ret ); } ssl->state++; /* * Check if the client sent an empty certificate */ if( ssl->endpoint == SSL_IS_SERVER && ssl->minor_ver == SSL_MINOR_VERSION_0 ) { if( ssl->in_msglen == 2 && ssl->in_msgtype == SSL_MSG_ALERT && ssl->in_msg[0] == SSL_ALERT_LEVEL_WARNING && ssl->in_msg[1] == SSL_ALERT_MSG_NO_CERT ) { SSL_DEBUG_MSG( 1, ( "SSLv3 client has no certificate" ) ); ssl->verify_result = BADCERT_MISSING; if( ssl->authmode == SSL_VERIFY_OPTIONAL ) return( 0 ); else return( POLARSSL_ERR_SSL_NO_CLIENT_CERTIFICATE ); } } if( ssl->endpoint == SSL_IS_SERVER && ssl->minor_ver != SSL_MINOR_VERSION_0 ) { if( ssl->in_hslen == 7 && ssl->in_msgtype == SSL_MSG_HANDSHAKE && ssl->in_msg[0] == SSL_HS_CERTIFICATE && memcmp( ssl->in_msg + 4, "\0\0\0", 3 ) == 0 ) { SSL_DEBUG_MSG( 1, ( "TLSv1 client has no certificate" ) ); ssl->verify_result = BADCERT_MISSING; if( ssl->authmode == SSL_VERIFY_REQUIRED ) return( POLARSSL_ERR_SSL_NO_CLIENT_CERTIFICATE ); else return( 0 ); } } if( ssl->in_msgtype != SSL_MSG_HANDSHAKE ) { SSL_DEBUG_MSG( 1, ( "bad certificate message" ) ); return( POLARSSL_ERR_SSL_UNEXPECTED_MESSAGE ); } if( ssl->in_msg[0] != SSL_HS_CERTIFICATE || ssl->in_hslen < 10 ) { SSL_DEBUG_MSG( 1, ( "bad certificate message" ) ); return( POLARSSL_ERR_SSL_BAD_HS_CERTIFICATE ); } /* * Same message structure as in ssl_write_certificate() */ n = ( ssl->in_msg[5] << 8 ) | ssl->in_msg[6]; if( ssl->in_msg[4] != 0 || ssl->in_hslen != 7 + n ) { SSL_DEBUG_MSG( 1, ( "bad certificate message" ) ); return( POLARSSL_ERR_SSL_BAD_HS_CERTIFICATE ); } if( ( ssl->session_negotiate->peer_cert = (x509_cert *) malloc( sizeof( x509_cert ) ) ) == NULL ) { SSL_DEBUG_MSG( 1, ( "malloc(%d bytes) failed", sizeof( x509_cert ) ) ); return( POLARSSL_ERR_SSL_MALLOC_FAILED ); } memset( ssl->session_negotiate->peer_cert, 0, sizeof( x509_cert ) ); i = 7; while( i < ssl->in_hslen ) { if( ssl->in_msg[i] != 0 ) { SSL_DEBUG_MSG( 1, ( "bad certificate message" ) ); return( POLARSSL_ERR_SSL_BAD_HS_CERTIFICATE ); } n = ( (unsigned int) ssl->in_msg[i + 1] << 8 ) | (unsigned int) ssl->in_msg[i + 2]; i += 3; if( n < 128 || i + n > ssl->in_hslen ) { SSL_DEBUG_MSG( 1, ( "bad certificate message" ) ); return( POLARSSL_ERR_SSL_BAD_HS_CERTIFICATE ); } ret = x509parse_crt( ssl->session_negotiate->peer_cert, ssl->in_msg + i, n ); if( ret != 0 ) { SSL_DEBUG_RET( 1, " x509parse_crt", ret ); return( ret ); } i += n; } SSL_DEBUG_CRT( 3, "peer certificate", ssl->session_negotiate->peer_cert ); if( ssl->authmode != SSL_VERIFY_NONE ) { if( ssl->ca_chain == NULL ) { SSL_DEBUG_MSG( 1, ( "got no CA chain" ) ); return( POLARSSL_ERR_SSL_CA_CHAIN_REQUIRED ); } ret = x509parse_verify( ssl->session_negotiate->peer_cert, ssl->ca_chain, ssl->ca_crl, ssl->peer_cn, &ssl->verify_result, ssl->f_vrfy, ssl->p_vrfy ); if( ret != 0 ) SSL_DEBUG_RET( 1, "x509_verify_cert", ret ); if( ssl->authmode != SSL_VERIFY_REQUIRED ) ret = 0; } SSL_DEBUG_MSG( 2, ( "<= parse certificate" ) ); return( ret ); } int ssl_write_change_cipher_spec( ssl_context *ssl ) { int ret; SSL_DEBUG_MSG( 2, ( "=> write change cipher spec" ) ); ssl->out_msgtype = SSL_MSG_CHANGE_CIPHER_SPEC; ssl->out_msglen = 1; ssl->out_msg[0] = 1; ssl->state++; if( ( ret = ssl_write_record( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_write_record", ret ); return( ret ); } SSL_DEBUG_MSG( 2, ( "<= write change cipher spec" ) ); return( 0 ); } int ssl_parse_change_cipher_spec( ssl_context *ssl ) { int ret; SSL_DEBUG_MSG( 2, ( "=> parse change cipher spec" ) ); if( ( ret = ssl_read_record( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_read_record", ret ); return( ret ); } if( ssl->in_msgtype != SSL_MSG_CHANGE_CIPHER_SPEC ) { SSL_DEBUG_MSG( 1, ( "bad change cipher spec message" ) ); return( POLARSSL_ERR_SSL_UNEXPECTED_MESSAGE ); } if( ssl->in_msglen != 1 || ssl->in_msg[0] != 1 ) { SSL_DEBUG_MSG( 1, ( "bad change cipher spec message" ) ); return( POLARSSL_ERR_SSL_BAD_HS_CHANGE_CIPHER_SPEC ); } ssl->state++; SSL_DEBUG_MSG( 2, ( "<= parse change cipher spec" ) ); return( 0 ); } void ssl_optimize_checksum( ssl_context *ssl, int ciphersuite ) { if( ssl->minor_ver < SSL_MINOR_VERSION_3 ) ssl->handshake->update_checksum = ssl_update_checksum_md5sha1; else if ( ciphersuite == SSL_RSA_AES_256_GCM_SHA384 || ciphersuite == SSL_EDH_RSA_AES_256_GCM_SHA384 ) { ssl->handshake->update_checksum = ssl_update_checksum_sha384; } else ssl->handshake->update_checksum = ssl_update_checksum_sha256; } static void ssl_update_checksum_start( ssl_context *ssl, unsigned char *buf, size_t len ) { md5_update( &ssl->handshake->fin_md5 , buf, len ); sha1_update( &ssl->handshake->fin_sha1, buf, len ); sha2_update( &ssl->handshake->fin_sha2, buf, len ); sha4_update( &ssl->handshake->fin_sha4, buf, len ); } static void ssl_update_checksum_md5sha1( ssl_context *ssl, unsigned char *buf, size_t len ) { md5_update( &ssl->handshake->fin_md5 , buf, len ); sha1_update( &ssl->handshake->fin_sha1, buf, len ); } static void ssl_update_checksum_sha256( ssl_context *ssl, unsigned char *buf, size_t len ) { sha2_update( &ssl->handshake->fin_sha2, buf, len ); } static void ssl_update_checksum_sha384( ssl_context *ssl, unsigned char *buf, size_t len ) { sha4_update( &ssl->handshake->fin_sha4, buf, len ); } static void ssl_calc_finished_ssl( ssl_context *ssl, unsigned char *buf, int from ) { char *sender; md5_context md5; sha1_context sha1; unsigned char padbuf[48]; unsigned char md5sum[16]; unsigned char sha1sum[20]; ssl_session *session = ssl->session_negotiate; if( !session ) session = ssl->session; SSL_DEBUG_MSG( 2, ( "=> calc finished ssl" ) ); memcpy( &md5 , &ssl->handshake->fin_md5 , sizeof(md5_context) ); memcpy( &sha1, &ssl->handshake->fin_sha1, sizeof(sha1_context) ); /* * SSLv3: * hash = * MD5( master + pad2 + * MD5( handshake + sender + master + pad1 ) ) * + SHA1( master + pad2 + * SHA1( handshake + sender + master + pad1 ) ) */ SSL_DEBUG_BUF( 4, "finished md5 state", (unsigned char *) md5.state, sizeof( md5.state ) ); SSL_DEBUG_BUF( 4, "finished sha1 state", (unsigned char *) sha1.state, sizeof( sha1.state ) ); sender = ( from == SSL_IS_CLIENT ) ? (char *) "CLNT" : (char *) "SRVR"; memset( padbuf, 0x36, 48 ); md5_update( &md5, (unsigned char *) sender, 4 ); md5_update( &md5, session->master, 48 ); md5_update( &md5, padbuf, 48 ); md5_finish( &md5, md5sum ); sha1_update( &sha1, (unsigned char *) sender, 4 ); sha1_update( &sha1, session->master, 48 ); sha1_update( &sha1, padbuf, 40 ); sha1_finish( &sha1, sha1sum ); memset( padbuf, 0x5C, 48 ); md5_starts( &md5 ); md5_update( &md5, session->master, 48 ); md5_update( &md5, padbuf, 48 ); md5_update( &md5, md5sum, 16 ); md5_finish( &md5, buf ); sha1_starts( &sha1 ); sha1_update( &sha1, session->master, 48 ); sha1_update( &sha1, padbuf , 40 ); sha1_update( &sha1, sha1sum, 20 ); sha1_finish( &sha1, buf + 16 ); SSL_DEBUG_BUF( 3, "calc finished result", buf, 36 ); memset( &md5, 0, sizeof( md5_context ) ); memset( &sha1, 0, sizeof( sha1_context ) ); memset( padbuf, 0, sizeof( padbuf ) ); memset( md5sum, 0, sizeof( md5sum ) ); memset( sha1sum, 0, sizeof( sha1sum ) ); SSL_DEBUG_MSG( 2, ( "<= calc finished" ) ); } static void ssl_calc_finished_tls( ssl_context *ssl, unsigned char *buf, int from ) { int len = 12; char *sender; md5_context md5; sha1_context sha1; unsigned char padbuf[36]; ssl_session *session = ssl->session_negotiate; if( !session ) session = ssl->session; SSL_DEBUG_MSG( 2, ( "=> calc finished tls" ) ); memcpy( &md5 , &ssl->handshake->fin_md5 , sizeof(md5_context) ); memcpy( &sha1, &ssl->handshake->fin_sha1, sizeof(sha1_context) ); /* * TLSv1: * hash = PRF( master, finished_label, * MD5( handshake ) + SHA1( handshake ) )[0..11] */ SSL_DEBUG_BUF( 4, "finished md5 state", (unsigned char *) md5.state, sizeof( md5.state ) ); SSL_DEBUG_BUF( 4, "finished sha1 state", (unsigned char *) sha1.state, sizeof( sha1.state ) ); sender = ( from == SSL_IS_CLIENT ) ? (char *) "client finished" : (char *) "server finished"; md5_finish( &md5, padbuf ); sha1_finish( &sha1, padbuf + 16 ); ssl->handshake->tls_prf( session->master, 48, sender, padbuf, 36, buf, len ); SSL_DEBUG_BUF( 3, "calc finished result", buf, len ); memset( &md5, 0, sizeof( md5_context ) ); memset( &sha1, 0, sizeof( sha1_context ) ); memset( padbuf, 0, sizeof( padbuf ) ); SSL_DEBUG_MSG( 2, ( "<= calc finished" ) ); } static void ssl_calc_finished_tls_sha256( ssl_context *ssl, unsigned char *buf, int from ) { int len = 12; char *sender; sha2_context sha2; unsigned char padbuf[32]; ssl_session *session = ssl->session_negotiate; if( !session ) session = ssl->session; SSL_DEBUG_MSG( 2, ( "=> calc finished tls sha256" ) ); memcpy( &sha2, &ssl->handshake->fin_sha2, sizeof(sha2_context) ); /* * TLSv1.2: * hash = PRF( master, finished_label, * Hash( handshake ) )[0.11] */ SSL_DEBUG_BUF( 4, "finished sha2 state", (unsigned char *) sha2.state, sizeof( sha2.state ) ); sender = ( from == SSL_IS_CLIENT ) ? (char *) "client finished" : (char *) "server finished"; sha2_finish( &sha2, padbuf ); ssl->handshake->tls_prf( session->master, 48, sender, padbuf, 32, buf, len ); SSL_DEBUG_BUF( 3, "calc finished result", buf, len ); memset( &sha2, 0, sizeof( sha2_context ) ); memset( padbuf, 0, sizeof( padbuf ) ); SSL_DEBUG_MSG( 2, ( "<= calc finished" ) ); } static void ssl_calc_finished_tls_sha384( ssl_context *ssl, unsigned char *buf, int from ) { int len = 12; char *sender; sha4_context sha4; unsigned char padbuf[48]; ssl_session *session = ssl->session_negotiate; if( !session ) session = ssl->session; SSL_DEBUG_MSG( 2, ( "=> calc finished tls sha384" ) ); memcpy( &sha4, &ssl->handshake->fin_sha4, sizeof(sha4_context) ); /* * TLSv1.2: * hash = PRF( master, finished_label, * Hash( handshake ) )[0.11] */ SSL_DEBUG_BUF( 4, "finished sha4 state", (unsigned char *) sha4.state, sizeof( sha4.state ) ); sender = ( from == SSL_IS_CLIENT ) ? (char *) "client finished" : (char *) "server finished"; sha4_finish( &sha4, padbuf ); ssl->handshake->tls_prf( session->master, 48, sender, padbuf, 48, buf, len ); SSL_DEBUG_BUF( 3, "calc finished result", buf, len ); memset( &sha4, 0, sizeof( sha4_context ) ); memset( padbuf, 0, sizeof( padbuf ) ); SSL_DEBUG_MSG( 2, ( "<= calc finished" ) ); } void ssl_handshake_wrapup( ssl_context *ssl ) { SSL_DEBUG_MSG( 3, ( "=> handshake wrapup" ) ); /* * Free our handshake params */ ssl_handshake_free( ssl->handshake ); free( ssl->handshake ); ssl->handshake = NULL; /* * Switch in our now active transform context */ if( ssl->transform ) { ssl_transform_free( ssl->transform ); free( ssl->transform ); } ssl->transform = ssl->transform_negotiate; ssl->transform_negotiate = NULL; if( ssl->session ) { ssl_session_free( ssl->session ); free( ssl->session ); } ssl->session = ssl->session_negotiate; ssl->session_negotiate = NULL; /* * Add cache entry */ if( ssl->f_set_cache != NULL ) if( ssl->f_set_cache( ssl->p_set_cache, ssl->session ) != 0 ) SSL_DEBUG_MSG( 1, ( "cache did not store session" ) ); ssl->state++; SSL_DEBUG_MSG( 3, ( "<= handshake wrapup" ) ); } int ssl_write_finished( ssl_context *ssl ) { int ret, hash_len; SSL_DEBUG_MSG( 2, ( "=> write finished" ) ); ssl->handshake->calc_finished( ssl, ssl->out_msg + 4, ssl->endpoint ); // TODO TLS/1.2 Hash length is determined by cipher suite (Page 63) hash_len = ( ssl->minor_ver == SSL_MINOR_VERSION_0 ) ? 36 : 12; ssl->verify_data_len = hash_len; memcpy( ssl->own_verify_data, ssl->out_msg + 4, hash_len ); ssl->out_msglen = 4 + hash_len; ssl->out_msgtype = SSL_MSG_HANDSHAKE; ssl->out_msg[0] = SSL_HS_FINISHED; /* * In case of session resuming, invert the client and server * ChangeCipherSpec messages order. */ if( ssl->handshake->resume != 0 ) { if( ssl->endpoint == SSL_IS_CLIENT ) ssl->state = SSL_HANDSHAKE_WRAPUP; else ssl->state = SSL_CLIENT_CHANGE_CIPHER_SPEC; } else ssl->state++; /* * Switch to our negotiated transform and session parameters for outbound data. */ SSL_DEBUG_MSG( 3, ( "switching to new transform spec for outbound data" ) ); ssl->transform_out = ssl->transform_negotiate; ssl->session_out = ssl->session_negotiate; memset( ssl->out_ctr, 0, 8 ); if( ( ret = ssl_write_record( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_write_record", ret ); return( ret ); } SSL_DEBUG_MSG( 2, ( "<= write finished" ) ); return( 0 ); } int ssl_parse_finished( ssl_context *ssl ) { int ret; unsigned int hash_len; unsigned char buf[36]; SSL_DEBUG_MSG( 2, ( "=> parse finished" ) ); ssl->handshake->calc_finished( ssl, buf, ssl->endpoint ^ 1 ); /* * Switch to our negotiated transform and session parameters for inbound data. */ SSL_DEBUG_MSG( 3, ( "switching to new transform spec for inbound data" ) ); ssl->transform_in = ssl->transform_negotiate; ssl->session_in = ssl->session_negotiate; memset( ssl->in_ctr, 0, 8 ); if( ( ret = ssl_read_record( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_read_record", ret ); return( ret ); } if( ssl->in_msgtype != SSL_MSG_HANDSHAKE ) { SSL_DEBUG_MSG( 1, ( "bad finished message" ) ); return( POLARSSL_ERR_SSL_UNEXPECTED_MESSAGE ); } // TODO TLS/1.2 Hash length is determined by cipher suite (Page 63) hash_len = ( ssl->minor_ver == SSL_MINOR_VERSION_0 ) ? 36 : 12; if( ssl->in_msg[0] != SSL_HS_FINISHED || ssl->in_hslen != 4 + hash_len ) { SSL_DEBUG_MSG( 1, ( "bad finished message" ) ); return( POLARSSL_ERR_SSL_BAD_HS_FINISHED ); } if( memcmp( ssl->in_msg + 4, buf, hash_len ) != 0 ) { SSL_DEBUG_MSG( 1, ( "bad finished message" ) ); return( POLARSSL_ERR_SSL_BAD_HS_FINISHED ); } ssl->verify_data_len = hash_len; memcpy( ssl->peer_verify_data, buf, hash_len ); if( ssl->handshake->resume != 0 ) { if( ssl->endpoint == SSL_IS_CLIENT ) ssl->state = SSL_CLIENT_CHANGE_CIPHER_SPEC; if( ssl->endpoint == SSL_IS_SERVER ) ssl->state = SSL_HANDSHAKE_WRAPUP; } else ssl->state++; SSL_DEBUG_MSG( 2, ( "<= parse finished" ) ); return( 0 ); } int ssl_handshake_init( ssl_context *ssl ) { if( ssl->transform_negotiate ) ssl_transform_free( ssl->transform_negotiate ); else ssl->transform_negotiate = malloc( sizeof(ssl_transform) ); if( ssl->session_negotiate ) ssl_session_free( ssl->session_negotiate ); else ssl->session_negotiate = malloc( sizeof(ssl_session) ); if( ssl->handshake ) ssl_handshake_free( ssl->handshake ); else ssl->handshake = malloc( sizeof(ssl_handshake_params) ); if( ssl->handshake == NULL || ssl->transform_negotiate == NULL || ssl->session_negotiate == NULL ) { SSL_DEBUG_MSG( 1, ( "malloc() of ssl sub-contexts failed" ) ); return( POLARSSL_ERR_SSL_MALLOC_FAILED ); } memset( ssl->handshake, 0, sizeof(ssl_handshake_params) ); memset( ssl->transform_negotiate, 0, sizeof(ssl_transform) ); memset( ssl->session_negotiate, 0, sizeof(ssl_session) ); md5_starts( &ssl->handshake->fin_md5 ); sha1_starts( &ssl->handshake->fin_sha1 ); sha2_starts( &ssl->handshake->fin_sha2, 0 ); sha4_starts( &ssl->handshake->fin_sha4, 1 ); ssl->handshake->update_checksum = ssl_update_checksum_start; return( 0 ); } /* * Initialize an SSL context */ int ssl_init( ssl_context *ssl ) { int ret; int len = SSL_BUFFER_LEN; memset( ssl, 0, sizeof( ssl_context ) ); /* * Sane defaults */ ssl->rsa_decrypt = ssl_rsa_decrypt; ssl->rsa_sign = ssl_rsa_sign; ssl->rsa_key_len = ssl_rsa_key_len; #if defined(POLARSSL_DHM_C) if( ( ret = mpi_read_string( &ssl->dhm_P, 16, POLARSSL_DHM_RFC5114_MODP_1024_P) ) != 0 || ( ret = mpi_read_string( &ssl->dhm_G, 16, POLARSSL_DHM_RFC5114_MODP_1024_G) ) != 0 ) { SSL_DEBUG_RET( 1, "mpi_read_string", ret ); return( ret ); } #endif /* * Prepare base structures */ ssl->in_ctr = (unsigned char *) malloc( len ); ssl->in_hdr = ssl->in_ctr + 8; ssl->in_msg = ssl->in_ctr + 13; if( ssl->in_ctr == NULL ) { SSL_DEBUG_MSG( 1, ( "malloc(%d bytes) failed", len ) ); return( POLARSSL_ERR_SSL_MALLOC_FAILED ); } ssl->out_ctr = (unsigned char *) malloc( len ); ssl->out_hdr = ssl->out_ctr + 8; ssl->out_msg = ssl->out_ctr + 40; if( ssl->out_ctr == NULL ) { SSL_DEBUG_MSG( 1, ( "malloc(%d bytes) failed", len ) ); free( ssl-> in_ctr ); return( POLARSSL_ERR_SSL_MALLOC_FAILED ); } memset( ssl-> in_ctr, 0, SSL_BUFFER_LEN ); memset( ssl->out_ctr, 0, SSL_BUFFER_LEN ); ssl->hostname = NULL; ssl->hostname_len = 0; if( ( ret = ssl_handshake_init( ssl ) ) != 0 ) return( ret ); return( 0 ); } /* * Reset an initialized and used SSL context for re-use while retaining * all application-set variables, function pointers and data. */ int ssl_session_reset( ssl_context *ssl ) { int ret; ssl->state = SSL_HELLO_REQUEST; ssl->renegotiation = SSL_INITIAL_HANDSHAKE; ssl->secure_renegotiation = SSL_LEGACY_RENEGOTIATION; ssl->verify_data_len = 0; memset( ssl->own_verify_data, 0, 36 ); memset( ssl->peer_verify_data, 0, 36 ); ssl->in_offt = NULL; ssl->in_msgtype = 0; ssl->in_msglen = 0; ssl->in_left = 0; ssl->in_hslen = 0; ssl->nb_zero = 0; ssl->out_msgtype = 0; ssl->out_msglen = 0; ssl->out_left = 0; ssl->transform_in = NULL; ssl->transform_out = NULL; memset( ssl->out_ctr, 0, SSL_BUFFER_LEN ); memset( ssl->in_ctr, 0, SSL_BUFFER_LEN ); #if defined(POLARSSL_SSL_HW_RECORD_ACCEL) if( ssl_hw_record_reset != NULL) { SSL_DEBUG_MSG( 2, ( "going for ssl_hw_record_reset()" ) ); if( ssl_hw_record_reset( ssl ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_hw_record_reset", ret ); return( POLARSSL_ERR_SSL_HW_ACCEL_FAILED ); } } #endif if( ssl->transform ) { ssl_transform_free( ssl->transform ); free( ssl->transform ); ssl->transform = NULL; } if( ( ret = ssl_handshake_init( ssl ) ) != 0 ) return( ret ); return( 0 ); } /* * SSL set accessors */ void ssl_set_endpoint( ssl_context *ssl, int endpoint ) { ssl->endpoint = endpoint; } void ssl_set_authmode( ssl_context *ssl, int authmode ) { ssl->authmode = authmode; } void ssl_set_verify( ssl_context *ssl, int (*f_vrfy)(void *, x509_cert *, int, int *), void *p_vrfy ) { ssl->f_vrfy = f_vrfy; ssl->p_vrfy = p_vrfy; } void ssl_set_rng( ssl_context *ssl, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { ssl->f_rng = f_rng; ssl->p_rng = p_rng; } void ssl_set_dbg( ssl_context *ssl, void (*f_dbg)(void *, int, const char *), void *p_dbg ) { ssl->f_dbg = f_dbg; ssl->p_dbg = p_dbg; } void ssl_set_bio( ssl_context *ssl, int (*f_recv)(void *, unsigned char *, size_t), void *p_recv, int (*f_send)(void *, const unsigned char *, size_t), void *p_send ) { ssl->f_recv = f_recv; ssl->f_send = f_send; ssl->p_recv = p_recv; ssl->p_send = p_send; } void ssl_set_session_cache( ssl_context *ssl, int (*f_get_cache)(void *, ssl_session *), void *p_get_cache, int (*f_set_cache)(void *, const ssl_session *), void *p_set_cache ) { ssl->f_get_cache = f_get_cache; ssl->p_get_cache = p_get_cache; ssl->f_set_cache = f_set_cache; ssl->p_set_cache = p_set_cache; } void ssl_set_session( ssl_context *ssl, const ssl_session *session ) { memcpy( ssl->session_negotiate, session, sizeof(ssl_session) ); ssl->handshake->resume = 1; } void ssl_set_ciphersuites( ssl_context *ssl, const int *ciphersuites ) { ssl->ciphersuites = ciphersuites; } void ssl_set_ca_chain( ssl_context *ssl, x509_cert *ca_chain, x509_crl *ca_crl, const char *peer_cn ) { ssl->ca_chain = ca_chain; ssl->ca_crl = ca_crl; ssl->peer_cn = peer_cn; } void ssl_set_own_cert( ssl_context *ssl, x509_cert *own_cert, rsa_context *rsa_key ) { ssl->own_cert = own_cert; ssl->rsa_key = rsa_key; } void ssl_set_own_cert_alt( ssl_context *ssl, x509_cert *own_cert, void *rsa_key, rsa_decrypt_func rsa_decrypt, rsa_sign_func rsa_sign, rsa_key_len_func rsa_key_len ) { ssl->own_cert = own_cert; ssl->rsa_key = rsa_key; ssl->rsa_decrypt = rsa_decrypt; ssl->rsa_sign = rsa_sign; ssl->rsa_key_len = rsa_key_len; } #if defined(POLARSSL_DHM_C) int ssl_set_dh_param( ssl_context *ssl, const char *dhm_P, const char *dhm_G ) { int ret; if( ( ret = mpi_read_string( &ssl->dhm_P, 16, dhm_P ) ) != 0 ) { SSL_DEBUG_RET( 1, "mpi_read_string", ret ); return( ret ); } if( ( ret = mpi_read_string( &ssl->dhm_G, 16, dhm_G ) ) != 0 ) { SSL_DEBUG_RET( 1, "mpi_read_string", ret ); return( ret ); } return( 0 ); } int ssl_set_dh_param_ctx( ssl_context *ssl, dhm_context *dhm_ctx ) { int ret; if( ( ret = mpi_copy(&ssl->dhm_P, &dhm_ctx->P) ) != 0 ) { SSL_DEBUG_RET( 1, "mpi_copy", ret ); return( ret ); } if( ( ret = mpi_copy(&ssl->dhm_G, &dhm_ctx->G) ) != 0 ) { SSL_DEBUG_RET( 1, "mpi_copy", ret ); return( ret ); } return( 0 ); } #endif /* POLARSSL_DHM_C */ int ssl_set_hostname( ssl_context *ssl, const char *hostname ) { if( hostname == NULL ) return( POLARSSL_ERR_SSL_BAD_INPUT_DATA ); ssl->hostname_len = strlen( hostname ); ssl->hostname = (unsigned char *) malloc( ssl->hostname_len + 1 ); if( ssl->hostname == NULL ) return( POLARSSL_ERR_SSL_MALLOC_FAILED ); memcpy( ssl->hostname, (unsigned char *) hostname, ssl->hostname_len ); ssl->hostname[ssl->hostname_len] = '\0'; return( 0 ); } void ssl_set_sni( ssl_context *ssl, int (*f_sni)(void *, ssl_context *, const unsigned char *, size_t), void *p_sni ) { ssl->f_sni = f_sni; ssl->p_sni = p_sni; } void ssl_set_max_version( ssl_context *ssl, int major, int minor ) { ssl->max_major_ver = major; ssl->max_minor_ver = minor; } void ssl_set_renegotiation( ssl_context *ssl, int renegotiation ) { ssl->disable_renegotiation = renegotiation; } void ssl_legacy_renegotiation( ssl_context *ssl, int allow_legacy ) { ssl->allow_legacy_renegotiation = allow_legacy; } /* * SSL get accessors */ size_t ssl_get_bytes_avail( const ssl_context *ssl ) { return( ssl->in_offt == NULL ? 0 : ssl->in_msglen ); } int ssl_get_verify_result( const ssl_context *ssl ) { return( ssl->verify_result ); } const char *ssl_get_ciphersuite_name( const int ciphersuite_id ) { switch( ciphersuite_id ) { #if defined(POLARSSL_ARC4_C) case SSL_RSA_RC4_128_MD5: return( "SSL-RSA-RC4-128-MD5" ); case SSL_RSA_RC4_128_SHA: return( "SSL-RSA-RC4-128-SHA" ); #endif #if defined(POLARSSL_DES_C) case SSL_RSA_DES_168_SHA: return( "SSL-RSA-DES-168-SHA" ); case SSL_EDH_RSA_DES_168_SHA: return( "SSL-EDH-RSA-DES-168-SHA" ); #endif #if defined(POLARSSL_AES_C) case SSL_RSA_AES_128_SHA: return( "SSL-RSA-AES-128-SHA" ); case SSL_EDH_RSA_AES_128_SHA: return( "SSL-EDH-RSA-AES-128-SHA" ); case SSL_RSA_AES_256_SHA: return( "SSL-RSA-AES-256-SHA" ); case SSL_EDH_RSA_AES_256_SHA: return( "SSL-EDH-RSA-AES-256-SHA" ); #if defined(POLARSSL_SHA2_C) case SSL_RSA_AES_128_SHA256: return( "SSL-RSA-AES-128-SHA256" ); case SSL_EDH_RSA_AES_128_SHA256: return( "SSL-EDH-RSA-AES-128-SHA256" ); case SSL_RSA_AES_256_SHA256: return( "SSL-RSA-AES-256-SHA256" ); case SSL_EDH_RSA_AES_256_SHA256: return( "SSL-EDH-RSA-AES-256-SHA256" ); #endif #if defined(POLARSSL_GCM_C) && defined(POLARSSL_SHA2_C) case SSL_RSA_AES_128_GCM_SHA256: return( "SSL-RSA-AES-128-GCM-SHA256" ); case SSL_EDH_RSA_AES_128_GCM_SHA256: return( "SSL-EDH-RSA-AES-128-GCM-SHA256" ); #endif #if defined(POLARSSL_GCM_C) && defined(POLARSSL_SHA4_C) case SSL_RSA_AES_256_GCM_SHA384: return( "SSL-RSA-AES-256-GCM-SHA384" ); case SSL_EDH_RSA_AES_256_GCM_SHA384: return( "SSL-EDH-RSA-AES-256-GCM-SHA384" ); #endif #endif /* POLARSSL_AES_C */ #if defined(POLARSSL_CAMELLIA_C) case SSL_RSA_CAMELLIA_128_SHA: return( "SSL-RSA-CAMELLIA-128-SHA" ); case SSL_EDH_RSA_CAMELLIA_128_SHA: return( "SSL-EDH-RSA-CAMELLIA-128-SHA" ); case SSL_RSA_CAMELLIA_256_SHA: return( "SSL-RSA-CAMELLIA-256-SHA" ); case SSL_EDH_RSA_CAMELLIA_256_SHA: return( "SSL-EDH-RSA-CAMELLIA-256-SHA" ); #if defined(POLARSSL_SHA2_C) case SSL_RSA_CAMELLIA_128_SHA256: return( "SSL-RSA-CAMELLIA-128-SHA256" ); case SSL_EDH_RSA_CAMELLIA_128_SHA256: return( "SSL-EDH-RSA-CAMELLIA-128-SHA256" ); case SSL_RSA_CAMELLIA_256_SHA256: return( "SSL-RSA-CAMELLIA-256-SHA256" ); case SSL_EDH_RSA_CAMELLIA_256_SHA256: return( "SSL-EDH-RSA-CAMELLIA-256-SHA256" ); #endif #endif #if defined(POLARSSL_ENABLE_WEAK_CIPHERSUITES) #if defined(POLARSSL_CIPHER_NULL_CIPHER) case SSL_RSA_NULL_MD5: return( "SSL-RSA-NULL-MD5" ); case SSL_RSA_NULL_SHA: return( "SSL-RSA-NULL-SHA" ); case SSL_RSA_NULL_SHA256: return( "SSL-RSA-NULL-SHA256" ); #endif /* defined(POLARSSL_CIPHER_NULL_CIPHER) */ #if defined(POLARSSL_DES_C) case SSL_RSA_DES_SHA: return( "SSL-RSA-DES-SHA" ); case SSL_EDH_RSA_DES_SHA: return( "SSL-EDH-RSA-DES-SHA" ); #endif #endif /* defined(POLARSSL_ENABLE_WEAK_CIPHERSUITES) */ default: break; } return( "unknown" ); } int ssl_get_ciphersuite_id( const char *ciphersuite_name ) { #if defined(POLARSSL_ARC4_C) if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-RC4-128-MD5")) return( SSL_RSA_RC4_128_MD5 ); if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-RC4-128-SHA")) return( SSL_RSA_RC4_128_SHA ); #endif #if defined(POLARSSL_DES_C) if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-DES-168-SHA")) return( SSL_RSA_DES_168_SHA ); if (0 == strcasecmp(ciphersuite_name, "SSL-EDH-RSA-DES-168-SHA")) return( SSL_EDH_RSA_DES_168_SHA ); #endif #if defined(POLARSSL_AES_C) if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-AES-128-SHA")) return( SSL_RSA_AES_128_SHA ); if (0 == strcasecmp(ciphersuite_name, "SSL-EDH-RSA-AES-128-SHA")) return( SSL_EDH_RSA_AES_128_SHA ); if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-AES-256-SHA")) return( SSL_RSA_AES_256_SHA ); if (0 == strcasecmp(ciphersuite_name, "SSL-EDH-RSA-AES-256-SHA")) return( SSL_EDH_RSA_AES_256_SHA ); #if defined(POLARSSL_SHA2_C) if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-AES-128-SHA256")) return( SSL_RSA_AES_128_SHA256 ); if (0 == strcasecmp(ciphersuite_name, "SSL-EDH-RSA-AES-128-SHA256")) return( SSL_EDH_RSA_AES_128_SHA256 ); if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-AES-256-SHA256")) return( SSL_RSA_AES_256_SHA256 ); if (0 == strcasecmp(ciphersuite_name, "SSL-EDH-RSA-AES-256-SHA256")) return( SSL_EDH_RSA_AES_256_SHA256 ); #endif #if defined(POLARSSL_GCM_C) && defined(POLARSSL_SHA2_C) if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-AES-128-GCM-SHA256")) return( SSL_RSA_AES_128_GCM_SHA256 ); if (0 == strcasecmp(ciphersuite_name, "SSL-EDH-RSA-AES-128-GCM-SHA256")) return( SSL_EDH_RSA_AES_128_GCM_SHA256 ); #endif #if defined(POLARSSL_GCM_C) && defined(POLARSSL_SHA2_C) if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-AES-256-GCM-SHA384")) return( SSL_RSA_AES_256_GCM_SHA384 ); if (0 == strcasecmp(ciphersuite_name, "SSL-EDH-RSA-AES-256-GCM-SHA384")) return( SSL_EDH_RSA_AES_256_GCM_SHA384 ); #endif #endif #if defined(POLARSSL_CAMELLIA_C) if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-CAMELLIA-128-SHA")) return( SSL_RSA_CAMELLIA_128_SHA ); if (0 == strcasecmp(ciphersuite_name, "SSL-EDH-RSA-CAMELLIA-128-SHA")) return( SSL_EDH_RSA_CAMELLIA_128_SHA ); if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-CAMELLIA-256-SHA")) return( SSL_RSA_CAMELLIA_256_SHA ); if (0 == strcasecmp(ciphersuite_name, "SSL-EDH-RSA-CAMELLIA-256-SHA")) return( SSL_EDH_RSA_CAMELLIA_256_SHA ); #if defined(POLARSSL_SHA2_C) if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-CAMELLIA-128-SHA256")) return( SSL_RSA_CAMELLIA_128_SHA256 ); if (0 == strcasecmp(ciphersuite_name, "SSL-EDH-RSA-CAMELLIA-128-SHA256")) return( SSL_EDH_RSA_CAMELLIA_128_SHA256 ); if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-CAMELLIA-256-SHA256")) return( SSL_RSA_CAMELLIA_256_SHA256 ); if (0 == strcasecmp(ciphersuite_name, "SSL-EDH-RSA-CAMELLIA-256-SHA256")) return( SSL_EDH_RSA_CAMELLIA_256_SHA256 ); #endif #endif #if defined(POLARSSL_ENABLE_WEAK_CIPHERSUITES) #if defined(POLARSSL_CIPHER_NULL_CIPHER) if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-NULL-MD5")) return( SSL_RSA_NULL_MD5 ); if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-NULL-SHA")) return( SSL_RSA_NULL_SHA ); if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-NULL-SHA256")) return( SSL_RSA_NULL_SHA256 ); #endif /* defined(POLARSSL_CIPHER_NULL_CIPHER) */ #if defined(POLARSSL_DES_C) if (0 == strcasecmp(ciphersuite_name, "SSL-RSA-DES-SHA")) return( SSL_RSA_DES_SHA ); if (0 == strcasecmp(ciphersuite_name, "SSL-EDH-RSA-DES-SHA")) return( SSL_EDH_RSA_DES_SHA ); #endif #endif /* defined(POLARSSL_ENABLE_WEAK_CIPHERSUITES) */ return( 0 ); } const char *ssl_get_ciphersuite( const ssl_context *ssl ) { return ssl_get_ciphersuite_name( ssl->session->ciphersuite ); } const char *ssl_get_version( const ssl_context *ssl ) { switch( ssl->minor_ver ) { case SSL_MINOR_VERSION_0: return( "SSLv3.0" ); case SSL_MINOR_VERSION_1: return( "TLSv1.0" ); case SSL_MINOR_VERSION_2: return( "TLSv1.1" ); case SSL_MINOR_VERSION_3: return( "TLSv1.2" ); default: break; } return( "unknown" ); } const int ssl_default_ciphersuites[] = { #if defined(POLARSSL_DHM_C) #if defined(POLARSSL_AES_C) #if defined(POLARSSL_SHA2_C) SSL_EDH_RSA_AES_256_SHA256, #endif /* POLARSSL_SHA2_C */ #if defined(POLARSSL_GCM_C) && defined(POLARSSL_SHA4_C) SSL_EDH_RSA_AES_256_GCM_SHA384, #endif SSL_EDH_RSA_AES_256_SHA, #if defined(POLARSSL_SHA2_C) SSL_EDH_RSA_AES_128_SHA256, #endif #if defined(POLARSSL_GCM_C) && defined(POLARSSL_SHA2_C) SSL_EDH_RSA_AES_128_GCM_SHA256, #endif SSL_EDH_RSA_AES_128_SHA, #endif #if defined(POLARSSL_CAMELLIA_C) #if defined(POLARSSL_SHA2_C) SSL_EDH_RSA_CAMELLIA_256_SHA256, #endif /* POLARSSL_SHA2_C */ SSL_EDH_RSA_CAMELLIA_256_SHA, #if defined(POLARSSL_SHA2_C) SSL_EDH_RSA_CAMELLIA_128_SHA256, #endif /* POLARSSL_SHA2_C */ SSL_EDH_RSA_CAMELLIA_128_SHA, #endif #if defined(POLARSSL_DES_C) SSL_EDH_RSA_DES_168_SHA, #endif #endif #if defined(POLARSSL_AES_C) #if defined(POLARSSL_SHA2_C) SSL_RSA_AES_256_SHA256, #endif /* POLARSSL_SHA2_C */ #if defined(POLARSSL_GCM_C) && defined(POLARSSL_SHA4_C) SSL_RSA_AES_256_GCM_SHA384, #endif /* POLARSSL_SHA2_C */ SSL_RSA_AES_256_SHA, #endif #if defined(POLARSSL_CAMELLIA_C) #if defined(POLARSSL_SHA2_C) SSL_RSA_CAMELLIA_256_SHA256, #endif /* POLARSSL_SHA2_C */ SSL_RSA_CAMELLIA_256_SHA, #endif #if defined(POLARSSL_AES_C) #if defined(POLARSSL_SHA2_C) SSL_RSA_AES_128_SHA256, #endif /* POLARSSL_SHA2_C */ #if defined(POLARSSL_GCM_C) && defined(POLARSSL_SHA2_C) SSL_RSA_AES_128_GCM_SHA256, #endif /* POLARSSL_SHA2_C */ SSL_RSA_AES_128_SHA, #endif #if defined(POLARSSL_CAMELLIA_C) #if defined(POLARSSL_SHA2_C) SSL_RSA_CAMELLIA_128_SHA256, #endif /* POLARSSL_SHA2_C */ SSL_RSA_CAMELLIA_128_SHA, #endif #if defined(POLARSSL_DES_C) SSL_RSA_DES_168_SHA, #endif #if defined(POLARSSL_ARC4_C) SSL_RSA_RC4_128_SHA, SSL_RSA_RC4_128_MD5, #endif 0 }; /* * Perform the SSL handshake */ int ssl_handshake( ssl_context *ssl ) { int ret = POLARSSL_ERR_SSL_FEATURE_UNAVAILABLE; SSL_DEBUG_MSG( 2, ( "=> handshake" ) ); #if defined(POLARSSL_SSL_CLI_C) if( ssl->endpoint == SSL_IS_CLIENT ) ret = ssl_handshake_client( ssl ); #endif #if defined(POLARSSL_SSL_SRV_C) if( ssl->endpoint == SSL_IS_SERVER ) ret = ssl_handshake_server( ssl ); #endif SSL_DEBUG_MSG( 2, ( "<= handshake" ) ); return( ret ); } /* * Renegotiate current connection */ int ssl_renegotiate( ssl_context *ssl ) { int ret; SSL_DEBUG_MSG( 2, ( "=> renegotiate" ) ); if( ssl->state != SSL_HANDSHAKE_OVER ) return( POLARSSL_ERR_SSL_BAD_INPUT_DATA ); ssl->state = SSL_HELLO_REQUEST; ssl->renegotiation = SSL_RENEGOTIATION; if( ( ret = ssl_handshake_init( ssl ) ) != 0 ) return( ret ); if( ( ret = ssl_handshake( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_handshake", ret ); return( ret ); } SSL_DEBUG_MSG( 2, ( "<= renegotiate" ) ); return( 0 ); } /* * Receive application data decrypted from the SSL layer */ int ssl_read( ssl_context *ssl, unsigned char *buf, size_t len ) { int ret; size_t n; SSL_DEBUG_MSG( 2, ( "=> read" ) ); if( ssl->state != SSL_HANDSHAKE_OVER ) { if( ( ret = ssl_handshake( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_handshake", ret ); return( ret ); } } if( ssl->in_offt == NULL ) { if( ( ret = ssl_read_record( ssl ) ) != 0 ) { if( ret == POLARSSL_ERR_SSL_CONN_EOF ) return( 0 ); SSL_DEBUG_RET( 1, "ssl_read_record", ret ); return( ret ); } if( ssl->in_msglen == 0 && ssl->in_msgtype == SSL_MSG_APPLICATION_DATA ) { /* * OpenSSL sends empty messages to randomize the IV */ if( ( ret = ssl_read_record( ssl ) ) != 0 ) { if( ret == POLARSSL_ERR_SSL_CONN_EOF ) return( 0 ); SSL_DEBUG_RET( 1, "ssl_read_record", ret ); return( ret ); } } if( ssl->in_msgtype == SSL_MSG_HANDSHAKE ) { SSL_DEBUG_MSG( 1, ( "received handshake message" ) ); if( ssl->endpoint == SSL_IS_CLIENT && ( ssl->in_msg[0] != SSL_HS_HELLO_REQUEST || ssl->in_hslen != 4 ) ) { SSL_DEBUG_MSG( 1, ( "handshake received (not HelloRequest)" ) ); return( POLARSSL_ERR_SSL_UNEXPECTED_MESSAGE ); } if( ssl->disable_renegotiation == SSL_RENEGOTIATION_DISABLED || ( ssl->secure_renegotiation == SSL_LEGACY_RENEGOTIATION && ssl->allow_legacy_renegotiation == SSL_LEGACY_NO_RENEGOTIATION ) ) { SSL_DEBUG_MSG( 3, ( "ignoring renegotiation, sending alert" ) ); if( ssl->minor_ver == SSL_MINOR_VERSION_0 ) { /* * SSLv3 does not have a "no_renegotiation" alert */ if( ( ret = ssl_send_fatal_handshake_failure( ssl ) ) != 0 ) return( ret ); } else { if( ( ret = ssl_send_alert_message( ssl, SSL_ALERT_LEVEL_WARNING, SSL_ALERT_MSG_NO_RENEGOTIATION ) ) != 0 ) { return( ret ); } } } else { if( ( ret = ssl_renegotiate( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_renegotiate", ret ); return( ret ); } return( POLARSSL_ERR_NET_WANT_READ ); } } else if( ssl->in_msgtype != SSL_MSG_APPLICATION_DATA ) { SSL_DEBUG_MSG( 1, ( "bad application data message" ) ); return( POLARSSL_ERR_SSL_UNEXPECTED_MESSAGE ); } ssl->in_offt = ssl->in_msg; } n = ( len < ssl->in_msglen ) ? len : ssl->in_msglen; memcpy( buf, ssl->in_offt, n ); ssl->in_msglen -= n; if( ssl->in_msglen == 0 ) /* all bytes consumed */ ssl->in_offt = NULL; else /* more data available */ ssl->in_offt += n; SSL_DEBUG_MSG( 2, ( "<= read" ) ); return( (int) n ); } /* * Send application data to be encrypted by the SSL layer */ int ssl_write( ssl_context *ssl, const unsigned char *buf, size_t len ) { int ret; size_t n; SSL_DEBUG_MSG( 2, ( "=> write" ) ); if( ssl->state != SSL_HANDSHAKE_OVER ) { if( ( ret = ssl_handshake( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_handshake", ret ); return( ret ); } } n = ( len < SSL_MAX_CONTENT_LEN ) ? len : SSL_MAX_CONTENT_LEN; if( ssl->out_left != 0 ) { if( ( ret = ssl_flush_output( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_flush_output", ret ); return( ret ); } } else { ssl->out_msglen = n; ssl->out_msgtype = SSL_MSG_APPLICATION_DATA; memcpy( ssl->out_msg, buf, n ); if( ( ret = ssl_write_record( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_write_record", ret ); return( ret ); } } SSL_DEBUG_MSG( 2, ( "<= write" ) ); return( (int) n ); } /* * Notify the peer that the connection is being closed */ int ssl_close_notify( ssl_context *ssl ) { int ret; SSL_DEBUG_MSG( 2, ( "=> write close notify" ) ); if( ( ret = ssl_flush_output( ssl ) ) != 0 ) { SSL_DEBUG_RET( 1, "ssl_flush_output", ret ); return( ret ); } if( ssl->state == SSL_HANDSHAKE_OVER ) { if( ( ret = ssl_send_alert_message( ssl, SSL_ALERT_LEVEL_WARNING, SSL_ALERT_MSG_CLOSE_NOTIFY ) ) != 0 ) { return( ret ); } } SSL_DEBUG_MSG( 2, ( "<= write close notify" ) ); return( ret ); } void ssl_transform_free( ssl_transform *transform ) { #if defined(POLARSSL_ZLIB_SUPPORT) deflateEnd( &transform->ctx_deflate ); inflateEnd( &transform->ctx_inflate ); #endif memset( transform, 0, sizeof( ssl_transform ) ); } void ssl_handshake_free( ssl_handshake_params *handshake ) { #if defined(POLARSSL_DHM_C) dhm_free( &handshake->dhm_ctx ); #endif memset( handshake, 0, sizeof( ssl_handshake_params ) ); } void ssl_session_free( ssl_session *session ) { if( session->peer_cert != NULL ) { x509_free( session->peer_cert ); free( session->peer_cert ); } memset( session, 0, sizeof( ssl_session ) ); } /* * Free an SSL context */ void ssl_free( ssl_context *ssl ) { SSL_DEBUG_MSG( 2, ( "=> free" ) ); if( ssl->out_ctr != NULL ) { memset( ssl->out_ctr, 0, SSL_BUFFER_LEN ); free( ssl->out_ctr ); } if( ssl->in_ctr != NULL ) { memset( ssl->in_ctr, 0, SSL_BUFFER_LEN ); free( ssl->in_ctr ); } #if defined(POLARSSL_DHM_C) mpi_free( &ssl->dhm_P ); mpi_free( &ssl->dhm_G ); #endif if( ssl->transform ) { ssl_transform_free( ssl->transform ); free( ssl->transform ); } if( ssl->handshake ) { ssl_handshake_free( ssl->handshake ); ssl_transform_free( ssl->transform_negotiate ); ssl_session_free( ssl->session_negotiate ); free( ssl->handshake ); free( ssl->transform_negotiate ); free( ssl->session_negotiate ); } if ( ssl->hostname != NULL) { memset( ssl->hostname, 0, ssl->hostname_len ); free( ssl->hostname ); ssl->hostname_len = 0; } #if defined(POLARSSL_SSL_HW_RECORD_ACCEL) if( ssl_hw_record_finish != NULL ) { SSL_DEBUG_MSG( 2, ( "going for ssl_hw_record_finish()" ) ); ssl_hw_record_finish( ssl ); } #endif SSL_DEBUG_MSG( 2, ( "<= free" ) ); /* Actually free after last debug message */ memset( ssl, 0, sizeof( ssl_context ) ); } #endif