/* * Elliptic curve DSA * * Copyright (C) 2006-2014, ARM Limited, All Rights Reserved * * This file is part of mbed TLS (https://tls.mbed.org) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* * References: * * SEC1 http://www.secg.org/index.php?action=secg,docs_secg */ #if !defined(POLARSSL_CONFIG_FILE) #include "mbedtls/config.h" #else #include POLARSSL_CONFIG_FILE #endif #if defined(POLARSSL_ECDSA_C) #include "mbedtls/ecdsa.h" #include "mbedtls/asn1write.h" #include #if defined(POLARSSL_ECDSA_DETERMINISTIC) #include "mbedtls/hmac_drbg.h" #endif /* * Derive a suitable integer for group grp from a buffer of length len * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3 */ static int derive_mpi( const ecp_group *grp, mpi *x, const unsigned char *buf, size_t blen ) { int ret; size_t n_size = ( grp->nbits + 7 ) / 8; size_t use_size = blen > n_size ? n_size : blen; MPI_CHK( mpi_read_binary( x, buf, use_size ) ); if( use_size * 8 > grp->nbits ) MPI_CHK( mpi_shift_r( x, use_size * 8 - grp->nbits ) ); /* While at it, reduce modulo N */ if( mpi_cmp_mpi( x, &grp->N ) >= 0 ) MPI_CHK( mpi_sub_mpi( x, x, &grp->N ) ); cleanup: return( ret ); } /* * Compute ECDSA signature of a hashed message (SEC1 4.1.3) * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message) */ int ecdsa_sign( ecp_group *grp, mpi *r, mpi *s, const mpi *d, const unsigned char *buf, size_t blen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { int ret, key_tries, sign_tries, blind_tries; ecp_point R; mpi k, e, t; /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ if( grp->N.p == NULL ) return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); ecp_point_init( &R ); mpi_init( &k ); mpi_init( &e ); mpi_init( &t ); sign_tries = 0; do { /* * Steps 1-3: generate a suitable ephemeral keypair * and set r = xR mod n */ key_tries = 0; do { MPI_CHK( ecp_gen_keypair( grp, &k, &R, f_rng, p_rng ) ); MPI_CHK( mpi_mod_mpi( r, &R.X, &grp->N ) ); if( key_tries++ > 10 ) { ret = POLARSSL_ERR_ECP_RANDOM_FAILED; goto cleanup; } } while( mpi_cmp_int( r, 0 ) == 0 ); /* * Step 5: derive MPI from hashed message */ MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); /* * Generate a random value to blind inv_mod in next step, * avoiding a potential timing leak. */ blind_tries = 0; do { size_t n_size = ( grp->nbits + 7 ) / 8; MPI_CHK( mpi_fill_random( &t, n_size, f_rng, p_rng ) ); MPI_CHK( mpi_shift_r( &t, 8 * n_size - grp->nbits ) ); /* See ecp_gen_keypair() */ if( ++blind_tries > 30 ) return( POLARSSL_ERR_ECP_RANDOM_FAILED ); } while( mpi_cmp_int( &t, 1 ) < 0 || mpi_cmp_mpi( &t, &grp->N ) >= 0 ); /* * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n */ MPI_CHK( mpi_mul_mpi( s, r, d ) ); MPI_CHK( mpi_add_mpi( &e, &e, s ) ); MPI_CHK( mpi_mul_mpi( &e, &e, &t ) ); MPI_CHK( mpi_mul_mpi( &k, &k, &t ) ); MPI_CHK( mpi_inv_mod( s, &k, &grp->N ) ); MPI_CHK( mpi_mul_mpi( s, s, &e ) ); MPI_CHK( mpi_mod_mpi( s, s, &grp->N ) ); if( sign_tries++ > 10 ) { ret = POLARSSL_ERR_ECP_RANDOM_FAILED; goto cleanup; } } while( mpi_cmp_int( s, 0 ) == 0 ); cleanup: ecp_point_free( &R ); mpi_free( &k ); mpi_free( &e ); mpi_free( &t ); return( ret ); } #if defined(POLARSSL_ECDSA_DETERMINISTIC) /* * Deterministic signature wrapper */ int ecdsa_sign_det( ecp_group *grp, mpi *r, mpi *s, const mpi *d, const unsigned char *buf, size_t blen, md_type_t md_alg ) { int ret; hmac_drbg_context rng_ctx; unsigned char data[2 * POLARSSL_ECP_MAX_BYTES]; size_t grp_len = ( grp->nbits + 7 ) / 8; const md_info_t *md_info; mpi h; if( ( md_info = md_info_from_type( md_alg ) ) == NULL ) return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); mpi_init( &h ); memset( &rng_ctx, 0, sizeof( hmac_drbg_context ) ); /* Use private key and message hash (reduced) to initialize HMAC_DRBG */ MPI_CHK( mpi_write_binary( d, data, grp_len ) ); MPI_CHK( derive_mpi( grp, &h, buf, blen ) ); MPI_CHK( mpi_write_binary( &h, data + grp_len, grp_len ) ); hmac_drbg_init_buf( &rng_ctx, md_info, data, 2 * grp_len ); ret = ecdsa_sign( grp, r, s, d, buf, blen, hmac_drbg_random, &rng_ctx ); cleanup: hmac_drbg_free( &rng_ctx ); mpi_free( &h ); return( ret ); } #endif /* POLARSSL_ECDSA_DETERMINISTIC */ /* * Verify ECDSA signature of hashed message (SEC1 4.1.4) * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message) */ int ecdsa_verify( ecp_group *grp, const unsigned char *buf, size_t blen, const ecp_point *Q, const mpi *r, const mpi *s) { int ret; mpi e, s_inv, u1, u2; ecp_point R, P; ecp_point_init( &R ); ecp_point_init( &P ); mpi_init( &e ); mpi_init( &s_inv ); mpi_init( &u1 ); mpi_init( &u2 ); /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ if( grp->N.p == NULL ) return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); /* * Step 1: make sure r and s are in range 1..n-1 */ if( mpi_cmp_int( r, 1 ) < 0 || mpi_cmp_mpi( r, &grp->N ) >= 0 || mpi_cmp_int( s, 1 ) < 0 || mpi_cmp_mpi( s, &grp->N ) >= 0 ) { ret = POLARSSL_ERR_ECP_VERIFY_FAILED; goto cleanup; } /* * Additional precaution: make sure Q is valid */ MPI_CHK( ecp_check_pubkey( grp, Q ) ); /* * Step 3: derive MPI from hashed message */ MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); /* * Step 4: u1 = e / s mod n, u2 = r / s mod n */ MPI_CHK( mpi_inv_mod( &s_inv, s, &grp->N ) ); MPI_CHK( mpi_mul_mpi( &u1, &e, &s_inv ) ); MPI_CHK( mpi_mod_mpi( &u1, &u1, &grp->N ) ); MPI_CHK( mpi_mul_mpi( &u2, r, &s_inv ) ); MPI_CHK( mpi_mod_mpi( &u2, &u2, &grp->N ) ); /* * Step 5: R = u1 G + u2 Q * * Since we're not using any secret data, no need to pass a RNG to * ecp_mul() for countermesures. */ MPI_CHK( ecp_mul( grp, &R, &u1, &grp->G, NULL, NULL ) ); MPI_CHK( ecp_mul( grp, &P, &u2, Q, NULL, NULL ) ); MPI_CHK( ecp_add( grp, &R, &R, &P ) ); if( ecp_is_zero( &R ) ) { ret = POLARSSL_ERR_ECP_VERIFY_FAILED; goto cleanup; } /* * Step 6: convert xR to an integer (no-op) * Step 7: reduce xR mod n (gives v) */ MPI_CHK( mpi_mod_mpi( &R.X, &R.X, &grp->N ) ); /* * Step 8: check if v (that is, R.X) is equal to r */ if( mpi_cmp_mpi( &R.X, r ) != 0 ) { ret = POLARSSL_ERR_ECP_VERIFY_FAILED; goto cleanup; } cleanup: ecp_point_free( &R ); ecp_point_free( &P ); mpi_free( &e ); mpi_free( &s_inv ); mpi_free( &u1 ); mpi_free( &u2 ); return( ret ); } /* * Convert a signature (given by context) to ASN.1 */ static int ecdsa_signature_to_asn1( ecdsa_context *ctx, unsigned char *sig, size_t *slen ) { int ret; unsigned char buf[POLARSSL_ECDSA_MAX_LEN]; unsigned char *p = buf + sizeof( buf ); size_t len = 0; ASN1_CHK_ADD( len, asn1_write_mpi( &p, buf, &ctx->s ) ); ASN1_CHK_ADD( len, asn1_write_mpi( &p, buf, &ctx->r ) ); ASN1_CHK_ADD( len, asn1_write_len( &p, buf, len ) ); ASN1_CHK_ADD( len, asn1_write_tag( &p, buf, ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ); memcpy( sig, p, len ); *slen = len; return( 0 ); } /* * Compute and write signature */ int ecdsa_write_signature( ecdsa_context *ctx, const unsigned char *hash, size_t hlen, unsigned char *sig, size_t *slen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { int ret; if( ( ret = ecdsa_sign( &ctx->grp, &ctx->r, &ctx->s, &ctx->d, hash, hlen, f_rng, p_rng ) ) != 0 ) { return( ret ); } return( ecdsa_signature_to_asn1( ctx, sig, slen ) ); } #if defined(POLARSSL_ECDSA_DETERMINISTIC) /* * Compute and write signature deterministically */ int ecdsa_write_signature_det( ecdsa_context *ctx, const unsigned char *hash, size_t hlen, unsigned char *sig, size_t *slen, md_type_t md_alg ) { int ret; if( ( ret = ecdsa_sign_det( &ctx->grp, &ctx->r, &ctx->s, &ctx->d, hash, hlen, md_alg ) ) != 0 ) { return( ret ); } return( ecdsa_signature_to_asn1( ctx, sig, slen ) ); } #endif /* POLARSSL_ECDSA_DETERMINISTIC */ /* * Read and check signature */ int ecdsa_read_signature( ecdsa_context *ctx, const unsigned char *hash, size_t hlen, const unsigned char *sig, size_t slen ) { int ret; unsigned char *p = (unsigned char *) sig; const unsigned char *end = sig + slen; size_t len; if( ( ret = asn1_get_tag( &p, end, &len, ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 ) { return( POLARSSL_ERR_ECP_BAD_INPUT_DATA + ret ); } if( p + len != end ) return( POLARSSL_ERR_ECP_BAD_INPUT_DATA + POLARSSL_ERR_ASN1_LENGTH_MISMATCH ); if( ( ret = asn1_get_mpi( &p, end, &ctx->r ) ) != 0 || ( ret = asn1_get_mpi( &p, end, &ctx->s ) ) != 0 ) return( POLARSSL_ERR_ECP_BAD_INPUT_DATA + ret ); if( ( ret = ecdsa_verify( &ctx->grp, hash, hlen, &ctx->Q, &ctx->r, &ctx->s ) ) != 0 ) return( ret ); if( p != end ) return( POLARSSL_ERR_ECP_SIG_LEN_MISMATCH ); return( 0 ); } /* * Generate key pair */ int ecdsa_genkey( ecdsa_context *ctx, ecp_group_id gid, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { return( ecp_use_known_dp( &ctx->grp, gid ) || ecp_gen_keypair( &ctx->grp, &ctx->d, &ctx->Q, f_rng, p_rng ) ); } /* * Set context from an ecp_keypair */ int ecdsa_from_keypair( ecdsa_context *ctx, const ecp_keypair *key ) { int ret; if( ( ret = ecp_group_copy( &ctx->grp, &key->grp ) ) != 0 || ( ret = mpi_copy( &ctx->d, &key->d ) ) != 0 || ( ret = ecp_copy( &ctx->Q, &key->Q ) ) != 0 ) { ecdsa_free( ctx ); } return( ret ); } /* * Initialize context */ void ecdsa_init( ecdsa_context *ctx ) { ecp_group_init( &ctx->grp ); mpi_init( &ctx->d ); ecp_point_init( &ctx->Q ); mpi_init( &ctx->r ); mpi_init( &ctx->s ); } /* * Free context */ void ecdsa_free( ecdsa_context *ctx ) { ecp_group_free( &ctx->grp ); mpi_free( &ctx->d ); ecp_point_free( &ctx->Q ); mpi_free( &ctx->r ); mpi_free( &ctx->s ); } #endif /* POLARSSL_ECDSA_C */