BEGIN_HEADER #include #include #include #include #include #include #include #include END_HEADER BEGIN_DEPENDENCIES depends_on:POLARSSL_PKCS1_V21:POLARSSL_RSA_C:POLARSSL_BIGNUM_C:POLARSSL_SHA1_C:POLARSSL_GENPRIME END_DEPENDENCIES BEGIN_CASE pkcs1_rsaes_oaep_encrypt:mod:radix_N:input_N:radix_E:input_E:hash:message_hex_string:seed:result_hex_str:result { unsigned char message_str[1000]; unsigned char output[1000]; unsigned char output_str[1000]; unsigned char rnd_buf[1000]; rsa_context ctx; size_t msg_len; rnd_buf_info info; info.length = unhexify( rnd_buf, {seed} ); info.buf = rnd_buf; rsa_init( &ctx, RSA_PKCS_V21, {hash} ); memset( message_str, 0x00, 1000 ); memset( output, 0x00, 1000 ); memset( output_str, 0x00, 1000 ); ctx.len = {mod} / 8 + ( ( {mod} % 8 ) ? 1 : 0 ); TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); msg_len = unhexify( message_str, {message_hex_string} ); TEST_ASSERT( rsa_pkcs1_encrypt( &ctx, &rnd_buffer_rand, &info, RSA_PUBLIC, msg_len, message_str, output ) == {result} ); if( {result} == 0 ) { hexify( output_str, output, ctx.len ); TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); } rsa_free( &ctx ); } END_CASE BEGIN_CASE pkcs1_rsaes_oaep_decrypt:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:hash:result_hex_str:seed:message_hex_string:result { unsigned char message_str[1000]; unsigned char output[1000]; unsigned char output_str[1000]; rsa_context ctx; mpi P1, Q1, H, G; size_t output_len; rnd_pseudo_info rnd_info; memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G ); rsa_init( &ctx, RSA_PKCS_V21, {hash} ); memset( message_str, 0x00, 1000 ); memset( output, 0x00, 1000 ); memset( output_str, 0x00, 1000 ); ctx.len = {mod} / 8 + ( ( {mod} % 8 ) ? 1 : 0 ); TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 ); TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 ); TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 ); TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 ); TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 ); TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 ); TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 ); TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); unhexify( message_str, {message_hex_string} ); TEST_ASSERT( rsa_pkcs1_decrypt( &ctx, rnd_pseudo_rand, &rnd_info, RSA_PRIVATE, &output_len, message_str, output, 1000 ) == {result} ); if( {result} == 0 ) { hexify( output_str, output, ctx.len ); TEST_ASSERT( strncasecmp( (char *) output_str, {result_hex_str}, strlen( {result_hex_str} ) ) == 0 ); } mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G ); rsa_free( &ctx ); } END_CASE BEGIN_CASE pkcs1_rsassa_pss_sign:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:digest:hash:message_hex_string:salt:result_hex_str:result { unsigned char message_str[1000]; unsigned char hash_result[1000]; unsigned char output[1000]; unsigned char output_str[1000]; unsigned char rnd_buf[1000]; rsa_context ctx; mpi P1, Q1, H, G; size_t msg_len; rnd_buf_info info; info.length = unhexify( rnd_buf, {salt} ); info.buf = rnd_buf; mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G ); rsa_init( &ctx, RSA_PKCS_V21, {hash} ); memset( message_str, 0x00, 1000 ); memset( hash_result, 0x00, 1000 ); memset( output, 0x00, 1000 ); memset( output_str, 0x00, 1000 ); ctx.len = {mod} / 8 + ( ( {mod} % 8 ) ? 1 : 0 ); TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 ); TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 ); TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 ); TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 ); TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 ); TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 ); TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 ); TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); msg_len = unhexify( message_str, {message_hex_string} ); switch( {digest} ) { #ifdef POLARSSL_MD2_C case SIG_RSA_MD2: md2( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_MD4_C case SIG_RSA_MD4: md4( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_MD5_C case SIG_RSA_MD5: md5( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_SHA1_C case SIG_RSA_SHA1: sha1( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_SHA2_C case SIG_RSA_SHA224: sha2( message_str, msg_len, hash_result, 1 ); break; case SIG_RSA_SHA256: sha2( message_str, msg_len, hash_result, 0 ); break; #endif #ifdef POLARSSL_SHA4_C case SIG_RSA_SHA384: sha4( message_str, msg_len, hash_result, 1 ); break; case SIG_RSA_SHA512: sha4( message_str, msg_len, hash_result, 0 ); break; #endif } TEST_ASSERT( rsa_pkcs1_sign( &ctx, &rnd_buffer_rand, &info, RSA_PRIVATE, {digest}, 0, hash_result, output ) == {result} ); if( {result} == 0 ) { hexify( output_str, output, ctx.len); TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); } mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G ); rsa_free( &ctx ); } END_CASE BEGIN_CASE pkcs1_rsassa_pss_verify:mod:radix_N:input_N:radix_E:input_E:digest:hash:message_hex_string:salt:result_hex_str:result { unsigned char message_str[1000]; unsigned char hash_result[1000]; unsigned char result_str[1000]; rsa_context ctx; size_t msg_len; rsa_init( &ctx, RSA_PKCS_V21, {hash} ); memset( message_str, 0x00, 1000 ); memset( hash_result, 0x00, 1000 ); memset( result_str, 0x00, 1000 ); ctx.len = {mod} / 8 + ( ( {mod} % 8 ) ? 1 : 0 ); TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); msg_len = unhexify( message_str, {message_hex_string} ); unhexify( result_str, {result_hex_str} ); switch( {digest} ) { #ifdef POLARSSL_MD2_C case SIG_RSA_MD2: md2( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_MD4_C case SIG_RSA_MD4: md4( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_MD5_C case SIG_RSA_MD5: md5( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_SHA1_C case SIG_RSA_SHA1: sha1( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_SHA2_C case SIG_RSA_SHA224: sha2( message_str, msg_len, hash_result, 1 ); break; case SIG_RSA_SHA256: sha2( message_str, msg_len, hash_result, 0 ); break; #endif #ifdef POLARSSL_SHA4_C case SIG_RSA_SHA384: sha4( message_str, msg_len, hash_result, 1 ); break; case SIG_RSA_SHA512: sha4( message_str, msg_len, hash_result, 0 ); break; #endif } TEST_ASSERT( rsa_pkcs1_verify( &ctx, NULL, NULL, RSA_PUBLIC, {digest}, 0, hash_result, result_str ) == {result} ); rsa_free( &ctx ); } END_CASE