/* * Common and shared functions used by multiple modules in the Mbed TLS * library. * * Copyright (C) 2018, Arm Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of Mbed TLS (https://tls.mbed.org) */ /* * Ensure gmtime_r is available even with -std=c99; must be defined before * config.h, which pulls in glibc's features.h. Harmless on other platforms. */ #if !defined(_POSIX_C_SOURCE) #define _POSIX_C_SOURCE 200112L #endif #if !defined(MBEDTLS_CONFIG_FILE) #include "mbedtls/config.h" #else #include MBEDTLS_CONFIG_FILE #endif #include "mbedtls/platform_util.h" #include "mbedtls/platform.h" #include "mbedtls/threading.h" #if !defined(MBEDTLS_PLATFORM_C) #include #define mbedtls_calloc calloc #define mbedtls_free free #endif #if defined(MBEDTLS_ENTROPY_HARDWARE_ALT) #include "mbedtls/entropy_poll.h" #endif #if defined(MBEDTLS_PLATFORM_FAULT_CALLBACKS) #include "platform_fault.h" #else static void mbedtls_platform_fault(){} #endif #include #include /* Max number of loops for mbedtls_platform_random_delay. */ #define MAX_RAND_DELAY 100 /* Parameters for the linear congruential generator used as a non-cryptographic * random number generator. The same parameters are used by e.g. ANSI C. */ #define RAND_MULTIPLIER 1103515245 #define RAND_INCREMENT 12345 #define RAND_MODULUS 0x80000000 /* The number of iterations after which the seed of the non-cryptographic * random number generator will be changed. This is used only if the * MBEDTLS_ENTROPY_HARDWARE_ALT option is enabled. */ #define RAND_SEED_LIFE 10000 #if !defined(MBEDTLS_PLATFORM_ZEROIZE_ALT) /* * This implementation should never be optimized out by the compiler * * This implementation for mbedtls_platform_zeroize() was inspired from Colin * Percival's blog article at: * * http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html * * It uses a volatile function pointer to the standard memset(). Because the * pointer is volatile the compiler expects it to change at * any time and will not optimize out the call that could potentially perform * other operations on the input buffer instead of just setting it to 0. * Nevertheless, as pointed out by davidtgoldblatt on Hacker News * (refer to http://www.daemonology.net/blog/2014-09-05-erratum.html for * details), optimizations of the following form are still possible: * * if( memset_func != memset ) * memset_func( buf, 0, len ); * * Note that it is extremely difficult to guarantee that * mbedtls_platform_zeroize() will not be optimized out by aggressive compilers * in a portable way. For this reason, Mbed TLS also provides the configuration * option MBEDTLS_PLATFORM_ZEROIZE_ALT, which allows users to configure * mbedtls_platform_zeroize() to use a suitable implementation for their * platform and needs. */ void *mbedtls_platform_memset( void *, int, size_t ); static void * (* const volatile memset_func)( void *, int, size_t ) = mbedtls_platform_memset; void *mbedtls_platform_zeroize( void *buf, size_t len ) { volatile size_t vlen = len; MBEDTLS_INTERNAL_VALIDATE_RET( ( len == 0 || buf != NULL ), NULL ); if( vlen > 0 ) { return memset_func( buf, 0, vlen ); } else { mbedtls_platform_random_delay(); if( vlen == 0 && vlen == len ) { return buf; } } return NULL; } #endif /* MBEDTLS_PLATFORM_ZEROIZE_ALT */ void *mbedtls_platform_memset( void *ptr, int value, size_t num ) { size_t i, start_offset = 0; volatile size_t flow_counter = 0; volatile char *b = ptr; char rnd_data; if( num > 0 ) { start_offset = (size_t) mbedtls_platform_random_in_range( (uint32_t) num ); rnd_data = (char) mbedtls_platform_random_in_range( 256 ); /* Perform a memset operations with random data and start from a random * location */ for( i = start_offset; i < num; ++i ) { b[i] = rnd_data; flow_counter++; } /* Start from a random location with target data */ for( i = start_offset; i < num; ++i ) { b[i] = value; flow_counter++; } /* Second memset operation with random data */ for( i = 0; i < start_offset; ++i ) { b[i] = rnd_data; flow_counter++; } /* Finish memset operation with correct data */ for( i = 0; i < start_offset; ++i ) { b[i] = value; flow_counter++; } } /* check the correct number of iterations */ if( flow_counter == 2 * num ) { mbedtls_platform_random_delay(); if( flow_counter == 2 * num ) { return ptr; } } mbedtls_platform_fault(); return NULL; } void *mbedtls_platform_memcpy( void *dst, const void *src, size_t num ) { size_t i; volatile size_t flow_counter = 0; if( num > 0 ) { /* Randomize start offset. */ size_t start_offset = (size_t) mbedtls_platform_random_in_range( (uint32_t) num ); /* Randomize initial data to prevent leakage while copying */ uint32_t data = mbedtls_platform_random_in_range( 256 ); /* Use memset with random value at first to increase security - memset is not normally part of the memcpy function and here can be useed with regular, unsecured implementation */ memset( (void *) dst, data, num ); /* Make a copy starting from a random location. */ i = start_offset; do { ( (char*) dst )[i] = ( (char*) src )[i]; flow_counter++; } while( ( i = ( i + 1 ) % num ) != start_offset ); } /* check the correct number of iterations */ if( flow_counter == num ) { mbedtls_platform_random_delay(); if( flow_counter == num ) { return dst; } } mbedtls_platform_fault(); return NULL; } int mbedtls_platform_memmove( void *dst, const void *src, size_t num ) { void *ret1 = NULL; void *ret2 = NULL; /* The buffers can have a common part, so we cannot do a copy from a random * location. By using a temporary buffer we can do so, but the cost of it * is using more memory and longer transfer time. */ void *tmp = mbedtls_calloc( 1, num ); if( tmp != NULL ) { ret1 = mbedtls_platform_memcpy( tmp, src, num ); ret2 = mbedtls_platform_memcpy( dst, tmp, num ); mbedtls_free( tmp ); if( ret1 == tmp && ret2 == dst ) { return 0; } return MBEDTLS_ERR_PLATFORM_FAULT_DETECTED; } return MBEDTLS_ERR_PLATFORM_ALLOC_FAILED; } #if !defined(MBEDTLS_DEPRECATED_REMOVED) int mbedtls_platform_memcmp( const void *buf1, const void *buf2, size_t num ) { return( mbedtls_platform_memequal( buf1, buf2, num ) ); } #endif /* MBEDTLS_DEPRECATED_REMOVED */ int mbedtls_platform_memequal( const void *buf1, const void *buf2, size_t num ) { volatile const unsigned char *A = (volatile const unsigned char *) buf1; volatile const unsigned char *B = (volatile const unsigned char *) buf2; volatile unsigned char diff = 0; /* Start from a random location and check the correct number of iterations */ size_t i, flow_counter = 0; size_t start_offset = 0; if( num > 0 ) { start_offset = (size_t) mbedtls_platform_random_in_range( (uint32_t) num ); for( i = start_offset; i < num; i++ ) { unsigned char x = A[i], y = B[i]; flow_counter++; diff |= x ^ y; } for( i = 0; i < start_offset; i++ ) { unsigned char x = A[i], y = B[i]; flow_counter++; diff |= x ^ y; } } /* Return 0 only when diff is 0 and flow_counter is equal to num */ return( (int) diff | (int) ( flow_counter ^ num ) ); } /* This function implements a non-cryptographic random number generator based * on the linear congruential generator algorithm. Additionally, if the * MBEDTLS_ENTROPY_HARDWARE_ALT flag is defined, the seed is set at the first * call of this function with using a hardware random number generator and * changed every RAND_SEED_LIFE number of iterations. * * The value of the returned number is in the range [0; 0xffff]. * * Note: The range of values with a 16-bit precision is related to the modulo * parameter of the generator and the fact that the function does not return the * full value of the internal state of the generator. */ static uint32_t mbedtls_platform_random_uint16( void ) { /* Set random_state - the first random value should not be zero. */ static uint32_t random_state = RAND_INCREMENT; #if defined(MBEDTLS_ENTROPY_HARDWARE_ALT) static uint32_t random_seed_life = 0; if( 0 < random_seed_life ) { --random_seed_life; } else { size_t olen = 0; uint32_t hw_random; mbedtls_hardware_poll( NULL, (unsigned char *) &hw_random, sizeof( hw_random ), &olen ); if( olen == sizeof( hw_random ) ) { random_state ^= hw_random; random_seed_life = RAND_SEED_LIFE; } } #endif /* MBEDTLS_ENTROPY_HARDWARE_ALT */ random_state = ( ( random_state * RAND_MULTIPLIER ) + RAND_INCREMENT ) % RAND_MODULUS; /* Do not return the entire random_state to hide generator predictability for * the next iteration */ return( ( random_state >> 15 ) & 0xffff ); } uint32_t mbedtls_platform_random_uint32( void ) { return( ( mbedtls_platform_random_uint16() << 16 ) | mbedtls_platform_random_uint16() ); } void mbedtls_platform_random_buf( uint8_t *buf, size_t len ) { volatile size_t flow_control = 0; uint16_t val; while( len > 1 ) { val = mbedtls_platform_random_uint16(); buf[len-1] = (uint8_t)val; buf[len-2] = (uint8_t)(val>>8); len -= 2; flow_control += 2; } if( len == 1 ) { buf[0] = (uint8_t)mbedtls_platform_random_uint16(); flow_control ++; } if ( flow_control == len ) { return; } mbedtls_platform_fault(); } uint32_t mbedtls_platform_random_in_range( uint32_t num ) { return mbedtls_platform_random_uint32() % num; } void mbedtls_platform_random_delay( void ) { #if defined(MBEDTLS_FI_COUNTERMEASURES) uint32_t rn_1, rn_2, rn_3; volatile size_t i = 0; uint8_t shift; rn_1 = mbedtls_platform_random_in_range( MAX_RAND_DELAY ); rn_2 = mbedtls_platform_random_in_range( 0xffffffff ) + 1; rn_3 = mbedtls_platform_random_in_range( 0xffffffff ) + 1; do { i++; /* Dummy calculations to increase the time between iterations and * make side channel attack more difficult by reducing predictability * of its behaviour. */ shift = ( rn_2 & 0x07 ) + 1; if ( i % 2 ) rn_2 = ( rn_2 >> shift ) | ( rn_2 << ( 32 - shift ) ); else rn_3 = ( rn_3 << shift ) | ( rn_3 >> ( 32 - shift ) ); rn_2 ^= rn_3; } while( i < rn_1 || rn_2 == 0 || rn_3 == 0 ); #endif /* MBEDTLS_FI_COUNTERMEASURES */ return; } #if defined(MBEDTLS_HAVE_TIME_DATE) && !defined(MBEDTLS_PLATFORM_GMTIME_R_ALT) #include #if !defined(_WIN32) && (defined(unix) || \ defined(__unix) || defined(__unix__) || (defined(__APPLE__) && \ defined(__MACH__))) #include #endif /* !_WIN32 && (unix || __unix || __unix__ || * (__APPLE__ && __MACH__)) */ #if !( ( defined(_POSIX_VERSION) && _POSIX_VERSION >= 200809L ) || \ ( defined(_POSIX_THREAD_SAFE_FUNCTIONS ) && \ _POSIX_THREAD_SAFE_FUNCTIONS >= 20112L ) ) /* * This is a convenience shorthand macro to avoid checking the long * preprocessor conditions above. Ideally, we could expose this macro in * platform_util.h and simply use it in platform_util.c, threading.c and * threading.h. However, this macro is not part of the Mbed TLS public API, so * we keep it private by only defining it in this file */ #if ! ( defined(_WIN32) && !defined(EFIX64) && !defined(EFI32) ) #define PLATFORM_UTIL_USE_GMTIME #endif /* ! ( defined(_WIN32) && !defined(EFIX64) && !defined(EFI32) ) */ #endif /* !( ( defined(_POSIX_VERSION) && _POSIX_VERSION >= 200809L ) || \ ( defined(_POSIX_THREAD_SAFE_FUNCTIONS ) && \ _POSIX_THREAD_SAFE_FUNCTIONS >= 20112L ) ) */ struct tm *mbedtls_platform_gmtime_r( const mbedtls_time_t *tt, struct tm *tm_buf ) { #if defined(_WIN32) && !defined(EFIX64) && !defined(EFI32) return( ( gmtime_s( tm_buf, tt ) == 0 ) ? tm_buf : NULL ); #elif !defined(PLATFORM_UTIL_USE_GMTIME) return( gmtime_r( tt, tm_buf ) ); #else struct tm *lt; #if defined(MBEDTLS_THREADING_C) if( mbedtls_mutex_lock( &mbedtls_threading_gmtime_mutex ) != 0 ) return( NULL ); #endif /* MBEDTLS_THREADING_C */ lt = gmtime( tt ); if( lt != NULL ) { memcpy( tm_buf, lt, sizeof( struct tm ) ); } #if defined(MBEDTLS_THREADING_C) if( mbedtls_mutex_unlock( &mbedtls_threading_gmtime_mutex ) != 0 ) return( NULL ); #endif /* MBEDTLS_THREADING_C */ return( ( lt == NULL ) ? NULL : tm_buf ); #endif /* _WIN32 && !EFIX64 && !EFI32 */ } #endif /* MBEDTLS_HAVE_TIME_DATE && MBEDTLS_PLATFORM_GMTIME_R_ALT */ #if defined(MBEDTLS_VALIDATE_AES_KEYS_INTEGRITY) || defined(MBEDTLS_VALIDATE_SSL_KEYS_INTEGRITY) uint32_t mbedtls_hash( const void *data, size_t data_len_bytes ) { uint32_t result = 0; size_t i; /* data_len_bytes - only multiples of 4 are considered, rest is truncated */ for( i = 0; i < data_len_bytes >> 2; i++ ) { result ^= ( (uint32_t*) data )[i]; } return result; } #endif unsigned char* mbedtls_platform_put_uint32_be( unsigned char *buf, size_t num ) { *buf++ = (unsigned char) ( num >> 24 ); *buf++ = (unsigned char) ( num >> 16 ); *buf++ = (unsigned char) ( num >> 8 ); *buf++ = (unsigned char) ( num ); return buf; } unsigned char* mbedtls_platform_put_uint24_be( unsigned char *buf, size_t num ) { *buf++ = (unsigned char) ( num >> 16 ); *buf++ = (unsigned char) ( num >> 8 ); *buf++ = (unsigned char) ( num ); return buf; } unsigned char* mbedtls_platform_put_uint16_be( unsigned char *buf, size_t num ) { *buf++ = (unsigned char) ( num >> 8 ); *buf++ = (unsigned char) ( num ); return buf; } size_t mbedtls_platform_get_uint32_be( const unsigned char *buf ) { return ( ( (unsigned int) buf[0] << 24 ) | ( (unsigned int) buf[1] << 16 ) | ( (unsigned int) buf[2] << 8 ) | ( (unsigned int) buf[3] ) ); } size_t mbedtls_platform_get_uint24_be( const unsigned char *buf ) { return ( ( buf[0] << 16 ) | ( buf[1] << 8) | ( buf[2] ) ); } size_t mbedtls_platform_get_uint16_be( const unsigned char *buf ) { return ( ( buf[0] << 8 ) | ( buf[1] ) ); }