/* * Camellia implementation * * Copyright (C) 2009 Paul Bakker * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* * The Camellia block cipher was designed by NTT and Mitsubishi Electric * Corporation. * * http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/01espec.pdf */ #include "polarssl/config.h" #if defined(POLARSSL_CAMELLIA_C) #include "polarssl/camellia.h" #include #include /* TEMP */ int verbose = 0; /* * 32-bit integer manipulation macros (big endian) */ #ifndef GET_ULONG_BE #define GET_ULONG_BE(n,b,i) \ { \ (n) = ( (unsigned long) (b)[(i) ] << 24 ) \ | ( (unsigned long) (b)[(i) + 1] << 16 ) \ | ( (unsigned long) (b)[(i) + 2] << 8 ) \ | ( (unsigned long) (b)[(i) + 3] ); \ } #endif #ifndef PUT_ULONG_BE #define PUT_ULONG_BE(n,b,i) \ { \ (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \ (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \ (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \ (b)[(i) + 3] = (unsigned char) ( (n) ); \ } #endif static const unsigned char SIGMA_CHARS[6][8] = { { 0xa0, 0x9e, 0x66, 0x7f, 0x3b, 0xcc, 0x90, 0x8b }, { 0xb6, 0x7a, 0xe8, 0x58, 0x4c, 0xaa, 0x73, 0xb2 }, { 0xc6, 0xef, 0x37, 0x2f, 0xe9, 0x4f, 0x82, 0xbe }, { 0x54, 0xff, 0x53, 0xa5, 0xf1, 0xd3, 0x6f, 0x1c }, { 0x10, 0xe5, 0x27, 0xfa, 0xde, 0x68, 0x2d, 0x1d }, { 0xb0, 0x56, 0x88, 0xc2, 0xb3, 0xe6, 0xc1, 0xfd } }; static const unsigned char FSb[256] = { 112,130, 44,236,179, 39,192,229,228,133, 87, 53,234, 12,174, 65, 35,239,107,147, 69, 25,165, 33,237, 14, 79, 78, 29,101,146,189, 134,184,175,143,124,235, 31,206, 62, 48,220, 95, 94,197, 11, 26, 166,225, 57,202,213, 71, 93, 61,217, 1, 90,214, 81, 86,108, 77, 139, 13,154,102,251,204,176, 45,116, 18, 43, 32,240,177,132,153, 223, 76,203,194, 52,126,118, 5,109,183,169, 49,209, 23, 4,215, 20, 88, 58, 97,222, 27, 17, 28, 50, 15,156, 22, 83, 24,242, 34, 254, 68,207,178,195,181,122,145, 36, 8,232,168, 96,252,105, 80, 170,208,160,125,161,137, 98,151, 84, 91, 30,149,224,255,100,210, 16,196, 0, 72,163,247,117,219,138, 3,230,218, 9, 63,221,148, 135, 92,131, 2,205, 74,144, 51,115,103,246,243,157,127,191,226, 82,155,216, 38,200, 55,198, 59,129,150,111, 75, 19,190, 99, 46, 233,121,167,140,159,110,188,142, 41,245,249,182, 47,253,180, 89, 120,152, 6,106,231, 70,113,186,212, 37,171, 66,136,162,141,250, 114, 7,185, 85,248,238,172, 10, 54, 73, 42,104, 60, 56,241,164, 64, 40,211,123,187,201, 67,193, 21,227,173,244,119,199,128,158 }; #define SBOX1(n) FSb[(n)] #define SBOX2(n) (unsigned char)((FSb[(n)] >> 7 ^ FSb[(n)] << 1) & 0xff) #define SBOX3(n) (unsigned char)((FSb[(n)] >> 1 ^ FSb[(n)] << 7) & 0xff) #define SBOX4(n) FSb[((n) << 1 ^ (n) >> 7) &0xff] static const unsigned char shifts[2][4][4] = { { { 1, 1, 1, 1 }, /* KL */ { 0, 0, 0, 0 }, /* KR */ { 1, 1, 1, 1 }, /* KA */ { 0, 0, 0, 0 } /* KB */ }, { { 1, 0, 1, 1 }, /* KL */ { 1, 1, 0, 1 }, /* KR */ { 1, 1, 1, 0 }, /* KA */ { 1, 1, 0, 1 } /* KB */ } }; static const char indexes[2][4][20] = { { { 0, 1, 2, 3, 8, 9, 10, 11, 38, 39, 36, 37, 23, 20, 21, 22, 27, -1, -1, 26 }, /* KL -> RK */ { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, /* KR -> RK */ { 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 19, -1, 24, 25, -1, 31, 28, 29, 30 }, /* KA -> RK */ { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } /* KB -> RK */ }, { { 0, 1, 2, 3, 61, 62, 63, 60, -1, -1, -1, -1, 27, 24, 25, 26, 35, 32, 33, 34 }, /* KL -> RK */ { -1, -1, -1, -1, 8, 9, 10, 11, 16, 17, 18, 19, -1, -1, -1, -1, 39, 36, 37, 38 }, /* KR -> RK */ { -1, -1, -1, -1, 12, 13, 14, 15, 58, 59, 56, 57, 31, 28, 29, 30, -1, -1, -1, -1 }, /* KA -> RK */ { 4, 5, 6, 7, 65, 66, 67, 64, 20, 21, 22, 23, -1, -1, -1, -1, 43, 40, 41, 42 } /* KB -> RK */ } }; static const char transposes[2][20] = { { 21, 22, 23, 20, -1, -1, -1, -1, 18, 19, 16, 17, 11, 8, 9, 10, 15, 12, 13, 14 }, { 25, 26, 27, 24, 29, 30, 31, 28, 18, 19, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1 } }; /* Shift macro for smaller than 32 bits (!) */ #define ROTL(DEST, SRC, SHIFT) \ { \ (DEST)[0] = (SRC)[0] << (SHIFT) ^ (SRC)[1] >> (32 - (SHIFT)); \ (DEST)[1] = (SRC)[1] << (SHIFT) ^ (SRC)[2] >> (32 - (SHIFT)); \ (DEST)[2] = (SRC)[2] << (SHIFT) ^ (SRC)[3] >> (32 - (SHIFT)); \ (DEST)[3] = (SRC)[3] << (SHIFT) ^ (SRC)[0] >> (32 - (SHIFT)); \ } #define FL(XL, XR, KL, KR) \ { \ (XR) = ((((XL) & (KL)) << 1) | (((XL) & (KL)) >> 31)) ^ (XR); \ (XL) = ((XR) | (KR)) ^ (XL); \ } #define FLInv(YL, YR, KL, KR) \ { \ (YL) = ((YR) | (KR)) ^ (YL); \ (YR) = ((((YL) & (KL)) << 1) | (((YL) & (KL)) >> 31)) ^ (YR); \ } #define SHIFT_AND_PLACE(INDEX, OFFSET) \ { \ TK[0] = KC[(OFFSET) * 4 + 0]; \ TK[1] = KC[(OFFSET) * 4 + 1]; \ TK[2] = KC[(OFFSET) * 4 + 2]; \ TK[3] = KC[(OFFSET) * 4 + 3]; \ \ for ( i = 1; i <= 4; i++ ) \ if (shifts[(INDEX)][(OFFSET)][i -1]) \ ROTL(TK + i * 4, TK, (15 * i) % 32); \ \ for ( i = 0; i < 20; i++ ) \ if (indexes[(INDEX)][(OFFSET)][i] != -1) { \ RK[indexes[(INDEX)][(OFFSET)][i]] = TK[ i ]; \ } \ } void camellia_feistel(unsigned long x[2], unsigned long k[2], unsigned long z[2]) { unsigned char t[8]; if (verbose >= 2) printf("FEISTEL: X: %08x%08x K: %08x%08x ", x[0], x[1], k[0], k[1]); t[0] = SBOX1(((x[0] ^ k[0]) >> 24) & 0xFF); t[1] = SBOX2(((x[0] ^ k[0]) >> 16) & 0xFF); t[2] = SBOX3(((x[0] ^ k[0]) >> 8) & 0xFF); t[3] = SBOX4(((x[0] ^ k[0]) ) & 0xFF); t[4] = SBOX2(((x[1] ^ k[1]) >> 24) & 0xFF); t[5] = SBOX3(((x[1] ^ k[1]) >> 16) & 0xFF); t[6] = SBOX4(((x[1] ^ k[1]) >> 8) & 0xFF); t[7] = SBOX1(((x[1] ^ k[1]) ) & 0xFF); z[0] ^= ((t[0] ^ t[2] ^ t[3] ^ t[5] ^ t[6] ^ t[7]) << 24) | ((t[0] ^ t[1] ^ t[3] ^ t[4] ^ t[6] ^ t[7]) << 16) | ((t[0] ^ t[1] ^ t[2] ^ t[4] ^ t[5] ^ t[7]) << 8) | ((t[1] ^ t[2] ^ t[3] ^ t[4] ^ t[5] ^ t[6]) ); z[1] ^= ((t[0] ^ t[1] ^ t[5] ^ t[6] ^ t[7]) << 24) | ((t[1] ^ t[2] ^ t[4] ^ t[6] ^ t[7]) << 16) | ((t[2] ^ t[3] ^ t[4] ^ t[5] ^ t[7]) << 8) | ((t[0] ^ t[3] ^ t[4] ^ t[5] ^ t[6]) ); if (verbose >= 2) printf("Z: %08x%08x\n", z[0], z[1]); } /* * Camellia key schedule (encryption) */ void camellia_setkey_enc( camellia_context *ctx, unsigned char *key, int keysize ) { int i, idx; unsigned long *RK; unsigned char t[64]; RK = ctx->rk; memset(t, 0, 64); memset(RK, 0, sizeof(ctx->rk)); switch( keysize ) { case 128: ctx->nr = 3; idx = 0; break; case 192: case 256: ctx->nr = 4; idx = 1; break; default : return; } for( i = 0; i < keysize / 8; ++i) t[i] = key[i]; if (keysize == 192) { for (i = 0; i < 8; i++) t[24 + i] = ~t[16 + i]; } if (verbose >= 2) printf("\nKey schedule (enc)\n"); /* * Prepare SIGMA values */ unsigned long SIGMA[6][2]; for (i = 0; i < 6; i++) { GET_ULONG_BE(SIGMA[i][0], SIGMA_CHARS[i], 0); GET_ULONG_BE(SIGMA[i][1], SIGMA_CHARS[i], 4); } /* * Key storage in KC * Order: KL, KR, KA, KB */ unsigned long KC[16]; memset(KC, 0, sizeof(KC)); /* Store KL, KR */ for (i = 0; i < 8; i++) GET_ULONG_BE(KC[i], t, i * 4); /* Generate KA */ for( i = 0; i < 4; ++i) KC[8 + i] = KC[i] ^ KC[4 + i]; camellia_feistel(KC + 8, SIGMA[0], KC + 10); camellia_feistel(KC + 10, SIGMA[1], KC + 8); for( i = 0; i < 4; ++i) KC[8 + i] ^= KC[i]; camellia_feistel(KC + 8, SIGMA[2], KC + 10); camellia_feistel(KC + 10, SIGMA[3], KC + 8); if (keysize > 128) { /* Generate KB */ for( i = 0; i < 4; ++i) KC[12 + i] = KC[4 + i] ^ KC[8 + i]; camellia_feistel(KC + 12, SIGMA[4], KC + 14); camellia_feistel(KC + 14, SIGMA[5], KC + 12); } /* * Generating subkeys */ unsigned long TK[20]; /* Manipulating KL */ SHIFT_AND_PLACE(idx, 0); /* Manipulating KR */ if (keysize > 128) { SHIFT_AND_PLACE(idx, 1); } /* Manipulating KA */ SHIFT_AND_PLACE(idx, 2); /* Manipulating KB */ if (keysize > 128) { SHIFT_AND_PLACE(idx, 3); } /* Do transpositions */ for ( i = 0; i < 20; i++ ) { if (transposes[idx][i] != -1) { RK[32 + 12 * idx + i] = RK[transposes[idx][i]]; } } if (verbose >= 3) for (i = 0; i < 26 + 8 * idx; ++i) printf("RK[%d]: %08x%08x\n", i * 2, ctx->rk[i * 2 + 0], ctx->rk[i * 2 + 1]); } /* * Camellia key schedule (decryption) */ void camellia_setkey_dec( camellia_context *ctx, unsigned char *key, int keysize ) { int i, idx; camellia_context cty; unsigned long *RK; unsigned long *SK; switch( keysize ) { case 128: ctx->nr = 3; idx = 0; break; case 192: case 256: ctx->nr = 4; idx = 1; break; default : return; } RK = ctx->rk; camellia_setkey_enc(&cty, key, keysize); SK = cty.rk + 24 * 2 + 8 * idx * 2; *RK++ = *SK++; *RK++ = *SK++; *RK++ = *SK++; *RK++ = *SK++; for (i = 22 + 8 * idx, SK -= 6; i > 0; i--, SK -= 4) { *RK++ = *SK++; *RK++ = *SK++; } SK -= 2; *RK++ = *SK++; *RK++ = *SK++; *RK++ = *SK++; *RK++ = *SK++; memset( &cty, 0, sizeof( camellia_context ) ); if (verbose >= 3) for (i = 0; i < 26 + 8 * idx; ++i) printf("RK[%d]: %08x%08x\n", i * 2, ctx->rk[i * 2 + 0], ctx->rk[i * 2 + 1]); } /* * Camellia-ECB block encryption/decryption */ void camellia_crypt_ecb( camellia_context *ctx, int mode, unsigned char input[16], unsigned char output[16] ) { int i, NR; unsigned long *RK, X[4], Y[4], T; NR = ctx->nr; RK = ctx->rk; if (verbose >= 2) printf("\nCrypt\n"); GET_ULONG_BE( X[0], input, 0 ); GET_ULONG_BE( X[1], input, 4 ); GET_ULONG_BE( X[2], input, 8 ); GET_ULONG_BE( X[3], input, 12 ); X[0] ^= *RK++; X[1] ^= *RK++; X[2] ^= *RK++; X[3] ^= *RK++; while (NR) { --NR; camellia_feistel(X, RK, X + 2); RK += 2; camellia_feistel(X + 2, RK, X); RK += 2; camellia_feistel(X, RK, X + 2); RK += 2; camellia_feistel(X + 2, RK, X); RK += 2; camellia_feistel(X, RK, X + 2); RK += 2; camellia_feistel(X + 2, RK, X); RK += 2; if (NR) { FL(X[0], X[1], RK[0], RK[1]); RK += 2; FLInv(X[2], X[3], RK[0], RK[1]); RK += 2; } } X[2] ^= *RK++; X[3] ^= *RK++; X[0] ^= *RK++; X[1] ^= *RK++; PUT_ULONG_BE( X[2], output, 0 ); PUT_ULONG_BE( X[3], output, 4 ); PUT_ULONG_BE( X[0], output, 8 ); PUT_ULONG_BE( X[1], output, 12 ); } /* * Camellia-CBC buffer encryption/decryption */ void camellia_crypt_cbc( camellia_context *ctx, int mode, int length, unsigned char iv[16], unsigned char *input, unsigned char *output ) { int i; unsigned char temp[16]; if( mode == CAMELLIA_DECRYPT ) { while( length > 0 ) { memcpy( temp, input, 16 ); camellia_crypt_ecb( ctx, mode, input, output ); for( i = 0; i < 16; i++ ) output[i] = (unsigned char)( output[i] ^ iv[i] ); memcpy( iv, temp, 16 ); input += 16; output += 16; length -= 16; } } else { while( length > 0 ) { for( i = 0; i < 16; i++ ) output[i] = (unsigned char)( input[i] ^ iv[i] ); camellia_crypt_ecb( ctx, mode, output, output ); memcpy( iv, output, 16 ); input += 16; output += 16; length -= 16; } } } /* * Camellia-CFB128 buffer encryption/decryption */ void camellia_crypt_cfb128( camellia_context *ctx, int mode, int length, int *iv_off, unsigned char iv[16], unsigned char *input, unsigned char *output ) { int c, n = *iv_off; if( mode == CAMELLIA_DECRYPT ) { while( length-- ) { if( n == 0 ) camellia_crypt_ecb( ctx, CAMELLIA_ENCRYPT, iv, iv ); c = *input++; *output++ = (unsigned char)( c ^ iv[n] ); iv[n] = (unsigned char) c; n = (n + 1) & 0x0F; } } else { while( length-- ) { if( n == 0 ) camellia_crypt_ecb( ctx, CAMELLIA_ENCRYPT, iv, iv ); iv[n] = *output++ = (unsigned char)( iv[n] ^ *input++ ); n = (n + 1) & 0x0F; } } *iv_off = n; } #if defined(POLARSSL_SELF_TEST) #include /* * Camellia test vectors from: * * http://info.isl.ntt.co.jp/crypt/eng/camellia/technology.html: * http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/cryptrec/intermediate.txt * http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/cryptrec/t_camellia.txt * (For each bitlength: Key 0, Nr 39) */ #define CAMELLIA_TESTS_ECB 2 static const unsigned char camellia_test_ecb_key[3][CAMELLIA_TESTS_ECB][32] = { { { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10 }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } }, { { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } }, { { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } }, }; static const unsigned char camellia_test_ecb_plain[CAMELLIA_TESTS_ECB][16] = { { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10 }, { 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } }; static const unsigned char camellia_test_ecb_cipher[3][CAMELLIA_TESTS_ECB][16] = { { { 0x67, 0x67, 0x31, 0x38, 0x54, 0x96, 0x69, 0x73, 0x08, 0x57, 0x06, 0x56, 0x48, 0xea, 0xbe, 0x43 }, { 0x38, 0x3C, 0x6C, 0x2A, 0xAB, 0xEF, 0x7F, 0xDE, 0x25, 0xCD, 0x47, 0x0B, 0xF7, 0x74, 0xA3, 0x31 } }, { { 0xb4, 0x99, 0x34, 0x01, 0xb3, 0xe9, 0x96, 0xf8, 0x4e, 0xe5, 0xce, 0xe7, 0xd7, 0x9b, 0x09, 0xb9 }, { 0xD1, 0x76, 0x3F, 0xC0, 0x19, 0xD7, 0x7C, 0xC9, 0x30, 0xBF, 0xF2, 0xA5, 0x6F, 0x7C, 0x93, 0x64 } }, { { 0x9a, 0xcc, 0x23, 0x7d, 0xff, 0x16, 0xd7, 0x6c, 0x20, 0xef, 0x7c, 0x91, 0x9e, 0x3a, 0x75, 0x09 }, { 0x05, 0x03, 0xFB, 0x10, 0xAB, 0x24, 0x1E, 0x7C, 0xF4, 0x5D, 0x8C, 0xDE, 0xEE, 0x47, 0x43, 0x35 } } }; #define CAMELLIA_TESTS_CBC 3 static const unsigned char camellia_test_cbc_key[3][32] = { { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C } , { 0x8E, 0x73, 0xB0, 0xF7, 0xDA, 0x0E, 0x64, 0x52, 0xC8, 0x10, 0xF3, 0x2B, 0x80, 0x90, 0x79, 0xE5, 0x62, 0xF8, 0xEA, 0xD2, 0x52, 0x2C, 0x6B, 0x7B } , { 0x60, 0x3D, 0xEB, 0x10, 0x15, 0xCA, 0x71, 0xBE, 0x2B, 0x73, 0xAE, 0xF0, 0x85, 0x7D, 0x77, 0x81, 0x1F, 0x35, 0x2C, 0x07, 0x3B, 0x61, 0x08, 0xD7, 0x2D, 0x98, 0x10, 0xA3, 0x09, 0x14, 0xDF, 0xF4 } }; static const unsigned char camellia_test_cbc_iv[16] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F } ; static const unsigned char camellia_test_cbc_plain[CAMELLIA_TESTS_CBC][16] = { { 0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96, 0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A }, { 0xAE, 0x2D, 0x8A, 0x57, 0x1E, 0x03, 0xAC, 0x9C, 0x9E, 0xB7, 0x6F, 0xAC, 0x45, 0xAF, 0x8E, 0x51 }, { 0x30, 0xC8, 0x1C, 0x46, 0xA3, 0x5C, 0xE4, 0x11, 0xE5, 0xFB, 0xC1, 0x19, 0x1A, 0x0A, 0x52, 0xEF } }; static const unsigned char camellia_test_cbc_cipher[3][CAMELLIA_TESTS_CBC][16] = { { { 0x16, 0x07, 0xCF, 0x49, 0x4B, 0x36, 0xBB, 0xF0, 0x0D, 0xAE, 0xB0, 0xB5, 0x03, 0xC8, 0x31, 0xAB }, { 0xA2, 0xF2, 0xCF, 0x67, 0x16, 0x29, 0xEF, 0x78, 0x40, 0xC5, 0xA5, 0xDF, 0xB5, 0x07, 0x48, 0x87 }, { 0x0F, 0x06, 0x16, 0x50, 0x08, 0xCF, 0x8B, 0x8B, 0x5A, 0x63, 0x58, 0x63, 0x62, 0x54, 0x3E, 0x54 } }, { { 0x2A, 0x48, 0x30, 0xAB, 0x5A, 0xC4, 0xA1, 0xA2, 0x40, 0x59, 0x55, 0xFD, 0x21, 0x95, 0xCF, 0x93 }, { 0x5D, 0x5A, 0x86, 0x9B, 0xD1, 0x4C, 0xE5, 0x42, 0x64, 0xF8, 0x92, 0xA6, 0xDD, 0x2E, 0xC3, 0xD5 }, { 0x37, 0xD3, 0x59, 0xC3, 0x34, 0x98, 0x36, 0xD8, 0x84, 0xE3, 0x10, 0xAD, 0xDF, 0x68, 0xC4, 0x49 } }, { { 0xE6, 0xCF, 0xA3, 0x5F, 0xC0, 0x2B, 0x13, 0x4A, 0x4D, 0x2C, 0x0B, 0x67, 0x37, 0xAC, 0x3E, 0xDA }, { 0x36, 0xCB, 0xEB, 0x73, 0xBD, 0x50, 0x4B, 0x40, 0x70, 0xB1, 0xB7, 0xDE, 0x2B, 0x21, 0xEB, 0x50 }, { 0xE3, 0x1A, 0x60, 0x55, 0x29, 0x7D, 0x96, 0xCA, 0x33, 0x30, 0xCD, 0xF1, 0xB1, 0x86, 0x0A, 0x83 } } }; /* * Checkup routine */ int camellia_self_test( int verbose ) { int i, j, u, v, offset; unsigned char key[32]; unsigned char buf[64]; unsigned char prv[16]; unsigned char src[16]; unsigned char dst[16]; unsigned char iv[16]; camellia_context ctx; memset( key, 0, 32 ); for (j = 0; j < 6; j++) { u = j >> 1; v = j & 1; if( verbose != 0 ) printf( " CAMELLIA-ECB-%3d (%s): ", 128 + u * 64, (v == CAMELLIA_DECRYPT) ? "dec" : "enc"); for (i = 0; i < CAMELLIA_TESTS_ECB; i++ ) { memcpy( key, camellia_test_ecb_key[u][i], 16 + 8 * u); if (v == CAMELLIA_DECRYPT) { camellia_setkey_dec(&ctx, key, 128 + u * 64); memcpy(src, camellia_test_ecb_cipher[u][i], 16); memcpy(dst, camellia_test_ecb_plain[i], 16); } else { /* CAMELLIA_ENCRYPT */ camellia_setkey_enc(&ctx, key, 128 + u * 64); memcpy(src, camellia_test_ecb_plain[i], 16); memcpy(dst, camellia_test_ecb_cipher[u][i], 16); } camellia_crypt_ecb(&ctx, v, src, buf); if( memcmp( buf, dst, 16 ) != 0 ) { if( verbose != 0 ) printf( "failed\n" ); return( 1 ); } } if( verbose != 0 ) printf( "passed\n" ); } if( verbose != 0 ) printf( "\n" ); /* * CBC mode */ for( j = 0; j < 6; j++ ) { u = j >> 1; v = j & 1; if( verbose != 0 ) printf( " CAMELLIA-CBC-%3d (%s): ", 128 + u * 64, ( v == CAMELLIA_DECRYPT ) ? "dec" : "enc" ); memcpy( src, camellia_test_cbc_iv, 16); memcpy( dst, camellia_test_cbc_iv, 16); memcpy( key, camellia_test_cbc_key[u], 16 + 8 * u); if (v == CAMELLIA_DECRYPT) { camellia_setkey_dec(&ctx, key, 128 + u * 64); } else { camellia_setkey_enc(&ctx, key, 128 + u * 64); } for (i = 0; i < CAMELLIA_TESTS_CBC; i++ ) { if (v == CAMELLIA_DECRYPT) { memcpy( iv , src, 16 ); memcpy(src, camellia_test_cbc_cipher[u][i], 16); memcpy(dst, camellia_test_cbc_plain[i], 16); } else { /* CAMELLIA_ENCRYPT */ memcpy( iv , dst, 16 ); memcpy(src, camellia_test_cbc_plain[i], 16); memcpy(dst, camellia_test_cbc_cipher[u][i], 16); } camellia_crypt_cbc(&ctx, v, 16, iv, src, buf); if( memcmp( buf, dst, 16 ) != 0 ) { if( verbose != 0 ) printf( "failed\n" ); return( 1 ); } } if( verbose != 0 ) printf( "passed\n" ); } if( verbose != 0 ) printf( "\n" ); return ( 0 ); /* * CFB128 mode */ /* for( i = 0; i < 6; i++ ) { u = i >> 1; v = i & 1; if( verbose != 0 ) printf( " AES-CFB128-%3d (%s): ", 128 + u * 64, ( v == AES_DECRYPT ) ? "dec" : "enc" ); memcpy( iv, aes_test_cfb128_iv, 16 ); memcpy( key, aes_test_cfb128_key[u], 16 + u * 8 ); offset = 0; aes_setkey_enc( &ctx, key, 128 + u * 64 ); if( v == AES_DECRYPT ) { memcpy( buf, aes_test_cfb128_ct[u], 64 ); aes_crypt_cfb128( &ctx, v, 64, &offset, iv, buf, buf ); if( memcmp( buf, aes_test_cfb128_pt, 64 ) != 0 ) { if( verbose != 0 ) printf( "failed\n" ); return( 1 ); } } else { memcpy( buf, aes_test_cfb128_pt, 64 ); aes_crypt_cfb128( &ctx, v, 64, &offset, iv, buf, buf ); if( memcmp( buf, aes_test_cfb128_ct[u], 64 ) != 0 ) { if( verbose != 0 ) printf( "failed\n" ); return( 1 ); } } if( verbose != 0 ) printf( "passed\n" ); } if( verbose != 0 ) printf( "\n" ); return( 0 ); */ } #endif #endif