/* * Diffie-Hellman-Merkle key exchange * * Copyright (C) 2006-2014, ARM Limited, All Rights Reserved * * This file is part of mbed TLS (https://polarssl.org) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* * Reference: * * http://www.cacr.math.uwaterloo.ca/hac/ (chapter 12) */ #if !defined(POLARSSL_CONFIG_FILE) #include "polarssl/config.h" #else #include POLARSSL_CONFIG_FILE #endif #if defined(POLARSSL_DHM_C) #include "polarssl/dhm.h" #if defined(POLARSSL_PEM_PARSE_C) #include "polarssl/pem.h" #endif #if defined(POLARSSL_ASN1_PARSE_C) #include "polarssl/asn1.h" #endif #if defined(POLARSSL_PLATFORM_C) #include "polarssl/platform.h" #else #include #define polarssl_printf printf #define polarssl_malloc malloc #define polarssl_free free #endif /* Implementation that should never be optimized out by the compiler */ static void polarssl_zeroize( void *v, size_t n ) { volatile unsigned char *p = v; while( n-- ) *p++ = 0; } /* * helper to validate the mpi size and import it */ static int dhm_read_bignum( mpi *X, unsigned char **p, const unsigned char *end ) { int ret, n; if( end - *p < 2 ) return( POLARSSL_ERR_DHM_BAD_INPUT_DATA ); n = ( (*p)[0] << 8 ) | (*p)[1]; (*p) += 2; if( (int)( end - *p ) < n ) return( POLARSSL_ERR_DHM_BAD_INPUT_DATA ); if( ( ret = mpi_read_binary( X, *p, n ) ) != 0 ) return( POLARSSL_ERR_DHM_READ_PARAMS_FAILED + ret ); (*p) += n; return( 0 ); } /* * Verify sanity of parameter with regards to P * * Parameter should be: 2 <= public_param <= P - 2 * * For more information on the attack, see: * http://www.cl.cam.ac.uk/~rja14/Papers/psandqs.pdf * http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2005-2643 */ static int dhm_check_range( const mpi *param, const mpi *P ) { mpi L, U; int ret = POLARSSL_ERR_DHM_BAD_INPUT_DATA; mpi_init( &L ); mpi_init( &U ); MPI_CHK( mpi_lset( &L, 2 ) ); MPI_CHK( mpi_sub_int( &U, P, 2 ) ); if( mpi_cmp_mpi( param, &L ) >= 0 && mpi_cmp_mpi( param, &U ) <= 0 ) { ret = 0; } cleanup: mpi_free( &L ); mpi_free( &U ); return( ret ); } void dhm_init( dhm_context *ctx ) { memset( ctx, 0, sizeof( dhm_context ) ); } /* * Parse the ServerKeyExchange parameters */ int dhm_read_params( dhm_context *ctx, unsigned char **p, const unsigned char *end ) { int ret; if( ( ret = dhm_read_bignum( &ctx->P, p, end ) ) != 0 || ( ret = dhm_read_bignum( &ctx->G, p, end ) ) != 0 || ( ret = dhm_read_bignum( &ctx->GY, p, end ) ) != 0 ) return( ret ); if( ( ret = dhm_check_range( &ctx->GY, &ctx->P ) ) != 0 ) return( ret ); ctx->len = mpi_size( &ctx->P ); return( 0 ); } /* * Setup and write the ServerKeyExchange parameters */ int dhm_make_params( dhm_context *ctx, int x_size, unsigned char *output, size_t *olen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { int ret, count = 0; size_t n1, n2, n3; unsigned char *p; if( mpi_cmp_int( &ctx->P, 0 ) == 0 ) return( POLARSSL_ERR_DHM_BAD_INPUT_DATA ); /* * Generate X as large as possible ( < P ) */ do { mpi_fill_random( &ctx->X, x_size, f_rng, p_rng ); while( mpi_cmp_mpi( &ctx->X, &ctx->P ) >= 0 ) MPI_CHK( mpi_shift_r( &ctx->X, 1 ) ); if( count++ > 10 ) return( POLARSSL_ERR_DHM_MAKE_PARAMS_FAILED ); } while( dhm_check_range( &ctx->X, &ctx->P ) != 0 ); /* * Calculate GX = G^X mod P */ MPI_CHK( mpi_exp_mod( &ctx->GX, &ctx->G, &ctx->X, &ctx->P , &ctx->RP ) ); if( ( ret = dhm_check_range( &ctx->GX, &ctx->P ) ) != 0 ) return( ret ); /* * export P, G, GX */ #define DHM_MPI_EXPORT(X,n) \ MPI_CHK( mpi_write_binary( X, p + 2, n ) ); \ *p++ = (unsigned char)( n >> 8 ); \ *p++ = (unsigned char)( n ); p += n; n1 = mpi_size( &ctx->P ); n2 = mpi_size( &ctx->G ); n3 = mpi_size( &ctx->GX ); p = output; DHM_MPI_EXPORT( &ctx->P , n1 ); DHM_MPI_EXPORT( &ctx->G , n2 ); DHM_MPI_EXPORT( &ctx->GX, n3 ); *olen = p - output; ctx->len = n1; cleanup: if( ret != 0 ) return( POLARSSL_ERR_DHM_MAKE_PARAMS_FAILED + ret ); return( 0 ); } /* * Import the peer's public value G^Y */ int dhm_read_public( dhm_context *ctx, const unsigned char *input, size_t ilen ) { int ret; if( ctx == NULL || ilen < 1 || ilen > ctx->len ) return( POLARSSL_ERR_DHM_BAD_INPUT_DATA ); if( ( ret = mpi_read_binary( &ctx->GY, input, ilen ) ) != 0 ) return( POLARSSL_ERR_DHM_READ_PUBLIC_FAILED + ret ); return( 0 ); } /* * Create own private value X and export G^X */ int dhm_make_public( dhm_context *ctx, int x_size, unsigned char *output, size_t olen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { int ret, count = 0; if( ctx == NULL || olen < 1 || olen > ctx->len ) return( POLARSSL_ERR_DHM_BAD_INPUT_DATA ); if( mpi_cmp_int( &ctx->P, 0 ) == 0 ) return( POLARSSL_ERR_DHM_BAD_INPUT_DATA ); /* * generate X and calculate GX = G^X mod P */ do { mpi_fill_random( &ctx->X, x_size, f_rng, p_rng ); while( mpi_cmp_mpi( &ctx->X, &ctx->P ) >= 0 ) MPI_CHK( mpi_shift_r( &ctx->X, 1 ) ); if( count++ > 10 ) return( POLARSSL_ERR_DHM_MAKE_PUBLIC_FAILED ); } while( dhm_check_range( &ctx->X, &ctx->P ) != 0 ); MPI_CHK( mpi_exp_mod( &ctx->GX, &ctx->G, &ctx->X, &ctx->P , &ctx->RP ) ); if( ( ret = dhm_check_range( &ctx->GX, &ctx->P ) ) != 0 ) return( ret ); MPI_CHK( mpi_write_binary( &ctx->GX, output, olen ) ); cleanup: if( ret != 0 ) return( POLARSSL_ERR_DHM_MAKE_PUBLIC_FAILED + ret ); return( 0 ); } /* * Use the blinding method and optimisation suggested in section 10 of: * KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA, * DSS, and other systems. In : Advances in Cryptology—CRYPTO’96. Springer * Berlin Heidelberg, 1996. p. 104-113. */ static int dhm_update_blinding( dhm_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { int ret, count; /* * Don't use any blinding the first time a particular X is used, * but remember it to use blinding next time. */ if( mpi_cmp_mpi( &ctx->X, &ctx->pX ) != 0 ) { MPI_CHK( mpi_copy( &ctx->pX, &ctx->X ) ); MPI_CHK( mpi_lset( &ctx->Vi, 1 ) ); MPI_CHK( mpi_lset( &ctx->Vf, 1 ) ); return( 0 ); } /* * Ok, we need blinding. Can we re-use existing values? * If yes, just update them by squaring them. */ if( mpi_cmp_int( &ctx->Vi, 1 ) != 0 ) { MPI_CHK( mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) ); MPI_CHK( mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->P ) ); MPI_CHK( mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) ); MPI_CHK( mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->P ) ); return( 0 ); } /* * We need to generate blinding values from scratch */ /* Vi = random( 2, P-1 ) */ count = 0; do { mpi_fill_random( &ctx->Vi, mpi_size( &ctx->P ), f_rng, p_rng ); while( mpi_cmp_mpi( &ctx->Vi, &ctx->P ) >= 0 ) MPI_CHK( mpi_shift_r( &ctx->Vi, 1 ) ); if( count++ > 10 ) return( POLARSSL_ERR_MPI_NOT_ACCEPTABLE ); } while( mpi_cmp_int( &ctx->Vi, 1 ) <= 0 ); /* Vf = Vi^-X mod P */ MPI_CHK( mpi_inv_mod( &ctx->Vf, &ctx->Vi, &ctx->P ) ); MPI_CHK( mpi_exp_mod( &ctx->Vf, &ctx->Vf, &ctx->X, &ctx->P, &ctx->RP ) ); cleanup: return( ret ); } /* * Derive and export the shared secret (G^Y)^X mod P */ int dhm_calc_secret( dhm_context *ctx, unsigned char *output, size_t *olen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { int ret; mpi GYb; if( ctx == NULL || *olen < ctx->len ) return( POLARSSL_ERR_DHM_BAD_INPUT_DATA ); if( ( ret = dhm_check_range( &ctx->GY, &ctx->P ) ) != 0 ) return( ret ); mpi_init( &GYb ); /* Blind peer's value */ if( f_rng != NULL ) { MPI_CHK( dhm_update_blinding( ctx, f_rng, p_rng ) ); MPI_CHK( mpi_mul_mpi( &GYb, &ctx->GY, &ctx->Vi ) ); MPI_CHK( mpi_mod_mpi( &GYb, &GYb, &ctx->P ) ); } else MPI_CHK( mpi_copy( &GYb, &ctx->GY ) ); /* Do modular exponentiation */ MPI_CHK( mpi_exp_mod( &ctx->K, &GYb, &ctx->X, &ctx->P, &ctx->RP ) ); /* Unblind secret value */ if( f_rng != NULL ) { MPI_CHK( mpi_mul_mpi( &ctx->K, &ctx->K, &ctx->Vf ) ); MPI_CHK( mpi_mod_mpi( &ctx->K, &ctx->K, &ctx->P ) ); } *olen = mpi_size( &ctx->K ); MPI_CHK( mpi_write_binary( &ctx->K, output, *olen ) ); cleanup: mpi_free( &GYb ); if( ret != 0 ) return( POLARSSL_ERR_DHM_CALC_SECRET_FAILED + ret ); return( 0 ); } /* * Free the components of a DHM key */ void dhm_free( dhm_context *ctx ) { mpi_free( &ctx->pX); mpi_free( &ctx->Vf ); mpi_free( &ctx->Vi ); mpi_free( &ctx->RP ); mpi_free( &ctx->K ); mpi_free( &ctx->GY ); mpi_free( &ctx->GX ); mpi_free( &ctx->X ); mpi_free( &ctx->G ); mpi_free( &ctx->P ); polarssl_zeroize( ctx, sizeof( dhm_context ) ); } #if defined(POLARSSL_ASN1_PARSE_C) /* * Parse DHM parameters */ int dhm_parse_dhm( dhm_context *dhm, const unsigned char *dhmin, size_t dhminlen ) { int ret; size_t len; unsigned char *p, *end; #if defined(POLARSSL_PEM_PARSE_C) pem_context pem; pem_init( &pem ); ret = pem_read_buffer( &pem, "-----BEGIN DH PARAMETERS-----", "-----END DH PARAMETERS-----", dhmin, NULL, 0, &dhminlen ); if( ret == 0 ) { /* * Was PEM encoded */ dhminlen = pem.buflen; } else if( ret != POLARSSL_ERR_PEM_NO_HEADER_FOOTER_PRESENT ) goto exit; p = ( ret == 0 ) ? pem.buf : (unsigned char *) dhmin; #else p = (unsigned char *) dhmin; #endif /* POLARSSL_PEM_PARSE_C */ end = p + dhminlen; /* * DHParams ::= SEQUENCE { * prime INTEGER, -- P * generator INTEGER, -- g * } */ if( ( ret = asn1_get_tag( &p, end, &len, ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 ) { ret = POLARSSL_ERR_DHM_INVALID_FORMAT + ret; goto exit; } end = p + len; if( ( ret = asn1_get_mpi( &p, end, &dhm->P ) ) != 0 || ( ret = asn1_get_mpi( &p, end, &dhm->G ) ) != 0 ) { ret = POLARSSL_ERR_DHM_INVALID_FORMAT + ret; goto exit; } if( p != end ) { ret = POLARSSL_ERR_DHM_INVALID_FORMAT + POLARSSL_ERR_ASN1_LENGTH_MISMATCH; goto exit; } ret = 0; dhm->len = mpi_size( &dhm->P ); exit: #if defined(POLARSSL_PEM_PARSE_C) pem_free( &pem ); #endif if( ret != 0 ) dhm_free( dhm ); return( ret ); } #if defined(POLARSSL_FS_IO) /* * Load all data from a file into a given buffer. */ static int load_file( const char *path, unsigned char **buf, size_t *n ) { FILE *f; long size; if( ( f = fopen( path, "rb" ) ) == NULL ) return( POLARSSL_ERR_DHM_FILE_IO_ERROR ); fseek( f, 0, SEEK_END ); if( ( size = ftell( f ) ) == -1 ) { fclose( f ); return( POLARSSL_ERR_DHM_FILE_IO_ERROR ); } fseek( f, 0, SEEK_SET ); *n = (size_t) size; if( *n + 1 == 0 || ( *buf = (unsigned char *) polarssl_malloc( *n + 1 ) ) == NULL ) { fclose( f ); return( POLARSSL_ERR_DHM_MALLOC_FAILED ); } if( fread( *buf, 1, *n, f ) != *n ) { fclose( f ); polarssl_free( *buf ); return( POLARSSL_ERR_DHM_FILE_IO_ERROR ); } fclose( f ); (*buf)[*n] = '\0'; return( 0 ); } /* * Load and parse DHM parameters */ int dhm_parse_dhmfile( dhm_context *dhm, const char *path ) { int ret; size_t n; unsigned char *buf; if( ( ret = load_file( path, &buf, &n ) ) != 0 ) return( ret ); ret = dhm_parse_dhm( dhm, buf, n ); polarssl_zeroize( buf, n + 1 ); polarssl_free( buf ); return( ret ); } #endif /* POLARSSL_FS_IO */ #endif /* POLARSSL_ASN1_PARSE_C */ #if defined(POLARSSL_SELF_TEST) #include "polarssl/certs.h" /* * Checkup routine */ int dhm_self_test( int verbose ) { #if defined(POLARSSL_CERTS_C) int ret; dhm_context dhm; dhm_init( &dhm ); if( verbose != 0 ) polarssl_printf( " DHM parameter load: " ); if( ( ret = dhm_parse_dhm( &dhm, (const unsigned char *) test_dhm_params, strlen( test_dhm_params ) ) ) != 0 ) { if( verbose != 0 ) polarssl_printf( "failed\n" ); ret = 1; goto exit; } if( verbose != 0 ) polarssl_printf( "passed\n\n" ); exit: dhm_free( &dhm ); return( ret ); #else if( verbose != 0 ) polarssl_printf( " DHM parameter load: skipped\n" ); return( 0 ); #endif /* POLARSSL_CERTS_C */ } #endif /* POLARSSL_SELF_TEST */ #endif /* POLARSSL_DHM_C */