/* * Elliptic curves over GF(p) * * Copyright (C) 2012, Brainspark B.V. * * This file is part of PolarSSL (http://www.polarssl.org) * Lead Maintainer: Paul Bakker * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* * References: * * SEC1 http://www.secg.org/index.php?action=secg,docs_secg * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone */ #include "polarssl/config.h" #if defined(POLARSSL_ECP_C) #include "polarssl/ecp.h" /* * Initialize (the components of) a point */ void ecp_point_init( ecp_point *pt ) { if( pt == NULL ) return; pt->is_zero = 1; mpi_init( &pt->X ); mpi_init( &pt->Y ); } /* * Initialize (the components of) a group */ void ecp_group_init( ecp_group *grp ) { if( grp == NULL ) return; mpi_init( &grp->P ); mpi_init( &grp->B ); ecp_point_init( &grp->G ); mpi_init( &grp->N ); } /* * Unallocate (the components of) a point */ void ecp_point_free( ecp_point *pt ) { if( pt == NULL ) return; pt->is_zero = 1; mpi_free( &( pt->X ) ); mpi_free( &( pt->Y ) ); } /* * Unallocate (the components of) a group */ void ecp_group_free( ecp_group *grp ) { if( grp == NULL ) return; mpi_free( &grp->P ); mpi_free( &grp->B ); ecp_point_free( &grp->G ); mpi_free( &grp->N ); } /* * Set point to zero */ void ecp_set_zero( ecp_point *pt ) { pt->is_zero = 1; mpi_free( &pt->X ); mpi_free( &pt->Y ); } /* * Copy the contents of Q into P */ int ecp_copy( ecp_point *P, const ecp_point *Q ) { int ret = 0; if( Q->is_zero ) { ecp_set_zero( P ); return( ret ); } P->is_zero = Q->is_zero; MPI_CHK( mpi_copy( &P->X, &Q->X ) ); MPI_CHK( mpi_copy( &P->Y, &Q->Y ) ); cleanup: return( ret ); } /* * Import a non-zero point from ASCII strings */ int ecp_point_read_string( ecp_point *P, int radix, const char *x, const char *y ) { int ret = 0; P->is_zero = 0; MPI_CHK( mpi_read_string( &P->X, radix, x ) ); MPI_CHK( mpi_read_string( &P->Y, radix, y ) ); cleanup: return( ret ); } /* * Import an ECP group from ASCII strings */ int ecp_group_read_string( ecp_group *grp, int radix, const char *p, const char *b, const char *gx, const char *gy, const char *n) { int ret = 0; MPI_CHK( mpi_read_string( &grp->P, radix, p ) ); MPI_CHK( mpi_read_string( &grp->B, radix, b ) ); MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) ); MPI_CHK( mpi_read_string( &grp->N, radix, n ) ); cleanup: return( ret ); } /* * Set a group using well-known domain parameters */ int ecp_use_known_dp( ecp_group *grp, size_t index ) { switch( index ) { case POLARSSL_ECP_DP_SECP192R1: return( ecp_group_read_string( grp, 16, POLARSSL_ECP_SECP192R1_P, POLARSSL_ECP_SECP192R1_B, POLARSSL_ECP_SECP192R1_GX, POLARSSL_ECP_SECP192R1_GY, POLARSSL_ECP_SECP192R1_N ) ); case POLARSSL_ECP_DP_SECP224R1: return( ecp_group_read_string( grp, 16, POLARSSL_ECP_SECP224R1_P, POLARSSL_ECP_SECP224R1_B, POLARSSL_ECP_SECP224R1_GX, POLARSSL_ECP_SECP224R1_GY, POLARSSL_ECP_SECP224R1_N ) ); case POLARSSL_ECP_DP_SECP256R1: return( ecp_group_read_string( grp, 16, POLARSSL_ECP_SECP256R1_P, POLARSSL_ECP_SECP256R1_B, POLARSSL_ECP_SECP256R1_GX, POLARSSL_ECP_SECP256R1_GY, POLARSSL_ECP_SECP256R1_N ) ); case POLARSSL_ECP_DP_SECP384R1: return( ecp_group_read_string( grp, 16, POLARSSL_ECP_SECP384R1_P, POLARSSL_ECP_SECP384R1_B, POLARSSL_ECP_SECP384R1_GX, POLARSSL_ECP_SECP384R1_GY, POLARSSL_ECP_SECP384R1_N ) ); case POLARSSL_ECP_DP_SECP521R1: return( ecp_group_read_string( grp, 16, POLARSSL_ECP_SECP521R1_P, POLARSSL_ECP_SECP521R1_B, POLARSSL_ECP_SECP521R1_GX, POLARSSL_ECP_SECP521R1_GY, POLARSSL_ECP_SECP521R1_N ) ); } return( POLARSSL_ERR_ECP_GENERIC ); } /* * Internal point format used for fast addition/doubling/multiplication: * Jacobian coordinates (GECC example 3.20) */ typedef struct { mpi X, Y, Z; } ecp_ptjac; /* * Initialize a point in Jacobian coordinates */ static void ecp_ptjac_init( ecp_ptjac *P ) { mpi_init( &P->X ); mpi_init( &P->Y ); mpi_init( &P->Z ); } /* * Free a point in Jacobian cooridnates */ static void ecp_ptjac_free( ecp_ptjac *P ) { mpi_free( &P->X ); mpi_free( &P->Y ); mpi_free( &P->Z ); } /* * Convert from affine to Jacobian coordinates */ static int ecp_aff_to_jac( ecp_ptjac *jac, const ecp_point *aff ) { int ret = 0; if( aff->is_zero ) { MPI_CHK( mpi_lset( &jac->X, 1 ) ); MPI_CHK( mpi_lset( &jac->Y, 1 ) ); MPI_CHK( mpi_lset( &jac->Z, 0 ) ); } else { MPI_CHK( mpi_copy( &jac->X, &aff->X ) ); MPI_CHK( mpi_copy( &jac->Y, &aff->Y ) ); MPI_CHK( mpi_lset( &jac->Z, 1 ) ); } cleanup: return( ret ); } /* * Convert from Jacobian to affine coordinates */ static int ecp_jac_to_aff( const ecp_group *grp, ecp_point *aff, const ecp_ptjac *jac ) { int ret = 0; mpi Zi, ZZi, T; if( mpi_cmp_int( &jac->Z, 0 ) == 0 ) { ecp_set_zero( aff ); return( 0 ); } mpi_init( &Zi ); mpi_init( &ZZi ); mpi_init( &T ); aff->is_zero = 0; /* * aff.X = jac.X / (jac.Z)^2 mod p */ MPI_CHK( mpi_inv_mod( &Zi, &jac->Z, &grp->P ) ); MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MPI_CHK( mpi_mul_mpi( &T, &jac->X, &ZZi ) ); MPI_CHK( mpi_mod_mpi( &aff->X, &T, &grp->P ) ); /* * aff.Y = jac.Y / (jac.Z)^3 mod p */ MPI_CHK( mpi_mul_mpi( &T, &jac->Y, &ZZi ) ); MPI_CHK( mpi_mul_mpi( &T, &T, &Zi ) ); MPI_CHK( mpi_mod_mpi( &aff->Y, &T, &grp->P ) ); cleanup: mpi_free( &Zi ); mpi_free( &ZZi ); mpi_free( &T ); return( ret ); } /* * Point doubling R = 2 P, Jacobian coordinates (GECC 3.21) */ static int ecp_double_jac( const ecp_group *grp, ecp_ptjac *R, const ecp_ptjac *P ) { int ret = 0; mpi T1, T2, T3, X, Y, Z; mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z ); if( mpi_cmp_int( &P->Z, 0 ) == 0 ) { MPI_CHK( mpi_lset( &R->X, 1 ) ); MPI_CHK( mpi_lset( &R->Y, 1 ) ); MPI_CHK( mpi_lset( &R->Z, 0 ) ); goto cleanup; } MPI_CHK( mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MPI_CHK( mpi_sub_mpi( &T2, &P->X, &T1 ) ); MPI_CHK( mpi_add_mpi( &T1, &P->X, &T1 ) ); MPI_CHK( mpi_mul_mpi( &T2, &T2, &T1 ) ); MPI_CHK( mpi_mul_int( &T2, &T2, 3 ) ); MPI_CHK( mpi_copy ( &Y, &P->Y ) ); MPI_CHK( mpi_shift_l( &Y, 1 ) ); MPI_CHK( mpi_mul_mpi( &Z, &Y, &P->Z ) ); MPI_CHK( mpi_mul_mpi( &Y, &Y, &Y ) ); MPI_CHK( mpi_mul_mpi( &T3, &Y, &P->X ) ); MPI_CHK( mpi_mul_mpi( &Y, &Y, &Y ) ); MPI_CHK( mpi_shift_r( &Y, 1 ) ); MPI_CHK( mpi_mul_mpi( &X, &T2, &T2 ) ); MPI_CHK( mpi_copy ( &T1, &T3 ) ); MPI_CHK( mpi_shift_l( &T1, 1 ) ); MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) ); MPI_CHK( mpi_sub_mpi( &T1, &T3, &X ) ); MPI_CHK( mpi_mul_mpi( &T1, &T1, &T2 ) ); MPI_CHK( mpi_sub_mpi( &Y, &T1, &Y ) ); MPI_CHK( mpi_mod_mpi( &R->X, &X, &grp->P ) ); MPI_CHK( mpi_mod_mpi( &R->Y, &Y, &grp->P ) ); MPI_CHK( mpi_mod_mpi( &R->Z, &Z, &grp->P ) ); cleanup: mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z ); return( ret ); } /* * Addition: R = P + Q, generic case (P != Q, P != 0, Q != 0, R != 0) * Cf SEC1 v2 p. 7, item 4 */ static int ecp_add_generic( const ecp_group *grp, ecp_point *R, const ecp_point *P, const ecp_point *Q ) { int ret = 0; mpi DX, DY, K, L, LL, X, Y; mpi_init( &DX ); mpi_init( &DY ); mpi_init( &K ); mpi_init( &L ); mpi_init( &LL ); mpi_init( &X ); mpi_init( &Y ); /* * L = (Q.Y - P.Y) / (Q.X - P.X) mod p */ MPI_CHK( mpi_sub_mpi( &DY, &Q->Y, &P->Y ) ); MPI_CHK( mpi_sub_mpi( &DX, &Q->X, &P->X ) ); MPI_CHK( mpi_inv_mod( &K, &DX, &grp->P ) ); MPI_CHK( mpi_mul_mpi( &K, &K, &DY ) ); MPI_CHK( mpi_mod_mpi( &L, &K, &grp->P ) ); /* * LL = L^2 mod p */ MPI_CHK( mpi_mul_mpi( &LL, &L, &L ) ); MPI_CHK( mpi_mod_mpi( &LL, &LL, &grp->P ) ); /* * X = L^2 - P.X - Q.X */ MPI_CHK( mpi_sub_mpi( &X, &LL, &P->X ) ); MPI_CHK( mpi_sub_mpi( &X, &X, &Q->X ) ); /* * Y = L * (P.X - X) - P.Y */ MPI_CHK( mpi_sub_mpi( &Y, &P->X, &X) ); MPI_CHK( mpi_mul_mpi( &Y, &Y, &L ) ); MPI_CHK( mpi_sub_mpi( &Y, &Y, &P->Y ) ); /* * R = (X mod p, Y mod p) */ R->is_zero = 0; MPI_CHK( mpi_mod_mpi( &R->X, &X, &grp->P ) ); MPI_CHK( mpi_mod_mpi( &R->Y, &Y, &grp->P ) ); cleanup: mpi_free( &DX ); mpi_free( &DY ); mpi_free( &K ); mpi_free( &L ); mpi_free( &LL ); mpi_free( &X ); mpi_free( &Y ); return( ret ); } /* * Addition: R = P + Q, cf p. 7 of SEC1 v2 */ int ecp_add( const ecp_group *grp, ecp_point *R, const ecp_point *P, const ecp_point *Q ) { int ret = 0; ecp_ptjac J; ecp_ptjac_init( &J ); if( P->is_zero ) { ret = ecp_copy( R, Q ); } else if( Q->is_zero ) { ret = ecp_copy( R, P ); } else if( mpi_cmp_mpi( &P->X, &Q->X ) != 0 ) { ret = ecp_add_generic( grp, R, P, Q ); } else if( mpi_cmp_mpi( &P->Y, &Q->Y ) != 0 ) { ecp_set_zero( R ); } else { /* * P == Q */ ecp_aff_to_jac( &J, P ); MPI_CHK( ecp_double_jac( grp, &J, &J ) ); MPI_CHK( ecp_jac_to_aff( grp, R, &J ) ); } cleanup: ecp_ptjac_free( &J ); return ret; } /* * Integer multiplication: R = m * P (GECC 5.7, SPA-resistant variant) */ int ecp_mul( const ecp_group *grp, ecp_point *R, const mpi *m, const ecp_point *P ) { int ret = 0; size_t pos; ecp_point Q[2]; ecp_point_init( &Q[0] ); ecp_point_init( &Q[1] ); /* * The general method works only for m >= 1 */ if( mpi_cmp_int( m, 0 ) == 0 ) { ecp_set_zero( R ); goto cleanup; } ecp_set_zero( &Q[0] ); for( pos = mpi_msb( m ) - 1 ; ; pos-- ) { MPI_CHK( ecp_add( grp, &Q[0], &Q[0], &Q[0] ) ); MPI_CHK( ecp_add( grp, &Q[1], &Q[0], P ) ); MPI_CHK( ecp_copy( &Q[0], &Q[ mpi_get_bit( m, pos ) ] ) ); if( pos == 0 ) break; } MPI_CHK( ecp_copy( R, &Q[0] ) ); cleanup: ecp_point_free( &Q[0] ); ecp_point_free( &Q[1] ); return( ret ); } #if defined(POLARSSL_SELF_TEST) /* * Checkup routine */ int ecp_self_test( int verbose ) { return( verbose++ ); } #endif #endif