/* BEGIN_HEADER */ #include #if defined(MBEDTLS_PSA_CRYPTO_SPM) #include "spm/psa_defs.h" #endif #include "mbedtls/asn1write.h" #include "psa/crypto.h" #define ARRAY_LENGTH( array ) ( sizeof( array ) / sizeof( *( array ) ) ) #if(UINT32_MAX > SIZE_MAX) #define PSA_CRYPTO_TEST_SIZE_T_RANGE( x ) ( ( x ) <= SIZE_MAX ) #else #define PSA_CRYPTO_TEST_SIZE_T_RANGE( x ) 1 #endif /** An invalid export length that will never be set by psa_export_key(). */ static const size_t INVALID_EXPORT_LENGTH = ~0U; /** Test if a buffer is all-bits zero. * * \param buffer Pointer to the beginning of the buffer. * \param size Size of the buffer in bytes. * * \return 1 if the buffer is all-bits-zero. * \return 0 if there is at least one nonzero byte. */ static int mem_is_zero( void *buffer, size_t size ) { size_t i; for( i = 0; i < size; i++ ) { if( ( (unsigned char *) buffer )[i] != 0 ) return( 0 ); } return( 1 ); } static int key_type_is_raw_bytes( psa_key_type_t type ) { psa_key_type_t category = type & PSA_KEY_TYPE_CATEGORY_MASK; return( category == PSA_KEY_TYPE_RAW_DATA || category == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ); } /* Write the ASN.1 INTEGER with the value 2^(bits-1)+x backwards from *p. */ static int asn1_write_10x( unsigned char **p, unsigned char *start, size_t bits, unsigned char x ) { int ret; int len = bits / 8 + 1; if( bits == 0 ) return( MBEDTLS_ERR_ASN1_INVALID_DATA ); if( bits <= 8 && x >= 1 << ( bits - 1 ) ) return( MBEDTLS_ERR_ASN1_INVALID_DATA ); if( *p < start || *p - start < (ptrdiff_t) len ) return( MBEDTLS_ERR_ASN1_BUF_TOO_SMALL ); *p -= len; ( *p )[len-1] = x; if( bits % 8 == 0 ) ( *p )[1] |= 1; else ( *p )[0] |= 1 << ( bits % 8 ); MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( p, start, len ) ); MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( p, start, MBEDTLS_ASN1_INTEGER ) ); return( len ); } static int construct_fake_rsa_key( unsigned char *buffer, size_t buffer_size, unsigned char **p, size_t bits, int keypair ) { size_t half_bits = ( bits + 1 ) / 2; int ret; int len = 0; /* Construct something that looks like a DER encoding of * as defined by PKCS#1 v2.2 (RFC 8017) section A.1.2: * RSAPrivateKey ::= SEQUENCE { * version Version, * modulus INTEGER, -- n * publicExponent INTEGER, -- e * privateExponent INTEGER, -- d * prime1 INTEGER, -- p * prime2 INTEGER, -- q * exponent1 INTEGER, -- d mod (p-1) * exponent2 INTEGER, -- d mod (q-1) * coefficient INTEGER, -- (inverse of q) mod p * otherPrimeInfos OtherPrimeInfos OPTIONAL * } * Or, for a public key, the same structure with only * version, modulus and publicExponent. */ *p = buffer + buffer_size; if( keypair ) { MBEDTLS_ASN1_CHK_ADD( len, /* pq */ asn1_write_10x( p, buffer, half_bits, 1 ) ); MBEDTLS_ASN1_CHK_ADD( len, /* dq */ asn1_write_10x( p, buffer, half_bits, 1 ) ); MBEDTLS_ASN1_CHK_ADD( len, /* dp */ asn1_write_10x( p, buffer, half_bits, 1 ) ); MBEDTLS_ASN1_CHK_ADD( len, /* q */ asn1_write_10x( p, buffer, half_bits, 1 ) ); MBEDTLS_ASN1_CHK_ADD( len, /* p != q to pass mbedtls sanity checks */ asn1_write_10x( p, buffer, half_bits, 3 ) ); MBEDTLS_ASN1_CHK_ADD( len, /* d */ asn1_write_10x( p, buffer, bits, 1 ) ); } MBEDTLS_ASN1_CHK_ADD( len, /* e = 65537 */ asn1_write_10x( p, buffer, 17, 1 ) ); MBEDTLS_ASN1_CHK_ADD( len, /* n */ asn1_write_10x( p, buffer, bits, 1 ) ); if( keypair ) MBEDTLS_ASN1_CHK_ADD( len, /* version = 0 */ mbedtls_asn1_write_int( p, buffer, 0 ) ); MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( p, buffer, len ) ); { const unsigned char tag = MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE; MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( p, buffer, tag ) ); } return( len ); } static int exercise_mac_key( psa_key_slot_t key, psa_key_usage_t usage, psa_algorithm_t alg ) { psa_mac_operation_t operation; const unsigned char input[] = "foo"; unsigned char mac[PSA_MAC_MAX_SIZE] = {0}; size_t mac_length = sizeof( mac ); if( usage & PSA_KEY_USAGE_SIGN ) { TEST_ASSERT( psa_mac_sign_setup( &operation, key, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_mac_update( &operation, input, sizeof( input ) ) == PSA_SUCCESS ); TEST_ASSERT( psa_mac_sign_finish( &operation, mac, sizeof( mac ), &mac_length ) == PSA_SUCCESS ); } if( usage & PSA_KEY_USAGE_VERIFY ) { psa_status_t verify_status = ( usage & PSA_KEY_USAGE_SIGN ? PSA_SUCCESS : PSA_ERROR_INVALID_SIGNATURE ); TEST_ASSERT( psa_mac_verify_setup( &operation, key, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_mac_update( &operation, input, sizeof( input ) ) == PSA_SUCCESS ); TEST_ASSERT( psa_mac_verify_finish( &operation, mac, mac_length ) == verify_status ); } return( 1 ); exit: psa_mac_abort( &operation ); return( 0 ); } static int exercise_cipher_key( psa_key_slot_t key, psa_key_usage_t usage, psa_algorithm_t alg ) { psa_cipher_operation_t operation; unsigned char iv[16] = {0}; size_t iv_length = sizeof( iv ); const unsigned char plaintext[16] = "Hello, world..."; unsigned char ciphertext[32] = "(wabblewebblewibblewobblewubble)"; size_t ciphertext_length = sizeof( ciphertext ); unsigned char decrypted[sizeof( ciphertext )]; size_t part_length; if( usage & PSA_KEY_USAGE_ENCRYPT ) { TEST_ASSERT( psa_cipher_encrypt_setup( &operation, key, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_generate_iv( &operation, iv, sizeof( iv ), &iv_length ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_update( &operation, plaintext, sizeof( plaintext ), ciphertext, sizeof( ciphertext ), &ciphertext_length ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_finish( &operation, ciphertext + ciphertext_length, sizeof( ciphertext ) - ciphertext_length, &part_length ) == PSA_SUCCESS ); ciphertext_length += part_length; } if( usage & PSA_KEY_USAGE_DECRYPT ) { psa_status_t status; psa_key_type_t type = PSA_KEY_TYPE_NONE; if( ! ( usage & PSA_KEY_USAGE_ENCRYPT ) ) { size_t bits; TEST_ASSERT( psa_get_key_information( key, &type, &bits ) ); iv_length = PSA_BLOCK_CIPHER_BLOCK_SIZE( type ); } TEST_ASSERT( psa_cipher_decrypt_setup( &operation, key, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_set_iv( &operation, iv, iv_length ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_update( &operation, ciphertext, ciphertext_length, decrypted, sizeof( decrypted ), &part_length ) == PSA_SUCCESS ); status = psa_cipher_finish( &operation, decrypted + part_length, sizeof( decrypted ) - part_length, &part_length ); /* For a stream cipher, all inputs are valid. For a block cipher, * if the input is some aribtrary data rather than an actual ciphertext, a padding error is likely. */ if( ( usage & PSA_KEY_USAGE_ENCRYPT ) || PSA_BLOCK_CIPHER_BLOCK_SIZE( type ) == 1 ) TEST_ASSERT( status == PSA_SUCCESS ); else TEST_ASSERT( status == PSA_SUCCESS || status == PSA_ERROR_INVALID_PADDING ); } return( 1 ); exit: psa_cipher_abort( &operation ); return( 0 ); } static int exercise_aead_key( psa_key_slot_t key, psa_key_usage_t usage, psa_algorithm_t alg ) { unsigned char nonce[16] = {0}; size_t nonce_length = sizeof( nonce ); unsigned char plaintext[16] = "Hello, world..."; unsigned char ciphertext[48] = "(wabblewebblewibblewobblewubble)"; size_t ciphertext_length = sizeof( ciphertext ); size_t plaintext_length = sizeof( ciphertext ); if( usage & PSA_KEY_USAGE_ENCRYPT ) { TEST_ASSERT( psa_aead_encrypt( key, alg, nonce, nonce_length, NULL, 0, plaintext, sizeof( plaintext ), ciphertext, sizeof( ciphertext ), &ciphertext_length ) == PSA_SUCCESS ); } if( usage & PSA_KEY_USAGE_DECRYPT ) { psa_status_t verify_status = ( usage & PSA_KEY_USAGE_ENCRYPT ? PSA_SUCCESS : PSA_ERROR_INVALID_SIGNATURE ); TEST_ASSERT( psa_aead_decrypt( key, alg, nonce, nonce_length, NULL, 0, ciphertext, ciphertext_length, plaintext, sizeof( plaintext ), &plaintext_length ) == verify_status ); } return( 1 ); exit: return( 0 ); } static int exercise_signature_key( psa_key_slot_t key, psa_key_usage_t usage, psa_algorithm_t alg ) { unsigned char payload[PSA_HASH_MAX_SIZE] = {1}; size_t payload_length = 16; unsigned char signature[PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE] = {0}; size_t signature_length = sizeof( signature ); if( usage & PSA_KEY_USAGE_SIGN ) { /* Some algorithms require the payload to have the size of * the hash encoded in the algorithm. Use this input size * even for algorithms that allow other input sizes. */ psa_algorithm_t hash_alg = PSA_ALG_SIGN_GET_HASH( alg ); if( hash_alg != 0 ) payload_length = PSA_HASH_SIZE( hash_alg ); TEST_ASSERT( psa_asymmetric_sign( key, alg, payload, payload_length, signature, sizeof( signature ), &signature_length ) == PSA_SUCCESS ); } if( usage & PSA_KEY_USAGE_VERIFY ) { psa_status_t verify_status = ( usage & PSA_KEY_USAGE_SIGN ? PSA_SUCCESS : PSA_ERROR_INVALID_SIGNATURE ); TEST_ASSERT( psa_asymmetric_verify( key, alg, payload, payload_length, signature, signature_length ) == verify_status ); } return( 1 ); exit: return( 0 ); } static int exercise_asymmetric_encryption_key( psa_key_slot_t key, psa_key_usage_t usage, psa_algorithm_t alg ) { unsigned char plaintext[256] = "Hello, world..."; unsigned char ciphertext[256] = "(wabblewebblewibblewobblewubble)"; size_t ciphertext_length = sizeof( ciphertext ); size_t plaintext_length = 16; if( usage & PSA_KEY_USAGE_ENCRYPT ) { TEST_ASSERT( psa_asymmetric_encrypt( key, alg, plaintext, plaintext_length, NULL, 0, ciphertext, sizeof( ciphertext ), &ciphertext_length ) == PSA_SUCCESS ); } if( usage & PSA_KEY_USAGE_DECRYPT ) { psa_status_t status = psa_asymmetric_decrypt( key, alg, ciphertext, ciphertext_length, NULL, 0, plaintext, sizeof( plaintext ), &plaintext_length ); TEST_ASSERT( status == PSA_SUCCESS || ( ( usage & PSA_KEY_USAGE_ENCRYPT ) == 0 && ( status == PSA_ERROR_INVALID_ARGUMENT || status == PSA_ERROR_INVALID_PADDING ) ) ); } return( 1 ); exit: return( 0 ); } static int exercise_key_derivation_key( psa_key_slot_t key, psa_key_usage_t usage, psa_algorithm_t alg ) { psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT; unsigned char label[16] = "This is a label."; size_t label_length = sizeof( label ); unsigned char seed[16] = "abcdefghijklmnop"; size_t seed_length = sizeof( seed ); unsigned char output[1]; if( usage & PSA_KEY_USAGE_DERIVE ) { TEST_ASSERT( psa_key_derivation( &generator, key, alg, label, label_length, seed, seed_length, sizeof( output ) ) == PSA_SUCCESS ); TEST_ASSERT( psa_generator_read( &generator, output, sizeof( output ) ) == PSA_SUCCESS ); TEST_ASSERT( psa_generator_abort( &generator ) == PSA_SUCCESS ); } return( 1 ); exit: return( 0 ); } static int exercise_key( psa_key_slot_t slot, psa_key_usage_t usage, psa_algorithm_t alg ) { int ok; if( alg == 0 ) ok = 1; /* If no algorihm, do nothing (used for raw data "keys"). */ else if( PSA_ALG_IS_MAC( alg ) ) ok = exercise_mac_key( slot, usage, alg ); else if( PSA_ALG_IS_CIPHER( alg ) ) ok = exercise_cipher_key( slot, usage, alg ); else if( PSA_ALG_IS_AEAD( alg ) ) ok = exercise_aead_key( slot, usage, alg ); else if( PSA_ALG_IS_SIGN( alg ) ) ok = exercise_signature_key( slot, usage, alg ); else if( PSA_ALG_IS_ASYMMETRIC_ENCRYPTION( alg ) ) ok = exercise_asymmetric_encryption_key( slot, usage, alg ); else if( PSA_ALG_IS_KEY_DERIVATION( alg ) ) ok = exercise_key_derivation_key( slot, usage, alg ); else { char message[40]; mbedtls_snprintf( message, sizeof( message ), "No code to exercise alg=0x%08lx", (unsigned long) alg ); test_fail( message, __LINE__, __FILE__ ); ok = 0; } return( ok ); } /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_PSA_CRYPTO_C * END_DEPENDENCIES */ /* BEGIN_CASE */ void init_deinit( ) { psa_status_t status; int i; for( i = 0; i <= 1; i++ ) { status = psa_crypto_init( ); TEST_ASSERT( status == PSA_SUCCESS ); status = psa_crypto_init( ); TEST_ASSERT( status == PSA_SUCCESS ); mbedtls_psa_crypto_free( ); } } /* END_CASE */ /* BEGIN_CASE */ void import( data_t *data, int type, int expected_status_arg ) { int slot = 1; psa_status_t expected_status = expected_status_arg; psa_status_t status; TEST_ASSERT( data != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( data->len ) ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); status = psa_import_key( slot, type, data->x, data->len ); TEST_ASSERT( status == expected_status ); if( status == PSA_SUCCESS ) TEST_ASSERT( psa_destroy_key( slot ) == PSA_SUCCESS ); exit: mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void import_rsa_made_up( int bits_arg, int keypair, int expected_status_arg ) { int slot = 1; size_t bits = bits_arg; psa_status_t expected_status = expected_status_arg; psa_status_t status; psa_key_type_t type = keypair ? PSA_KEY_TYPE_RSA_KEYPAIR : PSA_KEY_TYPE_RSA_PUBLIC_KEY; size_t buffer_size = /* Slight overapproximations */ keypair ? bits * 9 / 16 + 80 : bits / 8 + 20; unsigned char *buffer = mbedtls_calloc( 1, buffer_size ); unsigned char *p; int ret; size_t length; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); TEST_ASSERT( buffer != NULL ); TEST_ASSERT( ( ret = construct_fake_rsa_key( buffer, buffer_size, &p, bits, keypair ) ) >= 0 ); length = ret; /* Try importing the key */ status = psa_import_key( slot, type, p, length ); TEST_ASSERT( status == expected_status ); if( status == PSA_SUCCESS ) TEST_ASSERT( psa_destroy_key( slot ) == PSA_SUCCESS ); exit: mbedtls_free( buffer ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void import_export( data_t *data, int type_arg, int alg_arg, int usage_arg, int expected_bits, int export_size_delta, int expected_export_status_arg, int canonical_input ) { int slot = 1; int slot2 = slot + 1; psa_key_type_t type = type_arg; psa_algorithm_t alg = alg_arg; psa_status_t expected_export_status = expected_export_status_arg; psa_status_t status; unsigned char *exported = NULL; unsigned char *reexported = NULL; size_t export_size; size_t exported_length = INVALID_EXPORT_LENGTH; size_t reexported_length; psa_key_type_t got_type; size_t got_bits; psa_key_policy_t policy; TEST_ASSERT( data != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( data->len ) ); export_size = (ptrdiff_t) data->len + export_size_delta; exported = mbedtls_calloc( 1, export_size ); TEST_ASSERT( export_size == 0 || exported != NULL ); if( ! canonical_input ) { reexported = mbedtls_calloc( 1, export_size ); TEST_ASSERT( export_size == 0 || reexported != NULL ); } TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, usage_arg, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); /* Import the key */ TEST_ASSERT( psa_import_key( slot, type, data->x, data->len ) == PSA_SUCCESS ); /* Test the key information */ TEST_ASSERT( psa_get_key_information( slot, &got_type, &got_bits ) == PSA_SUCCESS ); TEST_ASSERT( got_type == type ); TEST_ASSERT( got_bits == (size_t) expected_bits ); /* Export the key */ status = psa_export_key( slot, exported, export_size, &exported_length ); TEST_ASSERT( status == expected_export_status ); /* The exported length must be set by psa_export_key() to a value between 0 * and export_size. On errors, the exported length must be 0. */ TEST_ASSERT( exported_length != INVALID_EXPORT_LENGTH ); TEST_ASSERT( status == PSA_SUCCESS || exported_length == 0 ); TEST_ASSERT( exported_length <= export_size ); TEST_ASSERT( mem_is_zero( exported + exported_length, export_size - exported_length ) ); if( status != PSA_SUCCESS ) { TEST_ASSERT( exported_length == 0 ); goto destroy; } if( canonical_input ) { TEST_ASSERT( exported_length == data->len ); TEST_ASSERT( memcmp( exported, data->x, data->len ) == 0 ); } else { TEST_ASSERT( psa_set_key_policy( slot2, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot2, type, exported, export_size ) == PSA_SUCCESS ); TEST_ASSERT( psa_export_key( slot2, reexported, export_size, &reexported_length ) == PSA_SUCCESS ); TEST_ASSERT( reexported_length == exported_length ); TEST_ASSERT( memcmp( reexported, exported, exported_length ) == 0 ); } destroy: /* Destroy the key */ TEST_ASSERT( psa_destroy_key( slot ) == PSA_SUCCESS ); TEST_ASSERT( psa_get_key_information( slot, NULL, NULL ) == PSA_ERROR_EMPTY_SLOT ); exit: mbedtls_free( exported ); mbedtls_free( reexported ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void import_export_public_key( data_t *data, int type_arg, int alg_arg, int expected_bits, int public_key_expected_length, int expected_export_status_arg ) { int slot = 1; psa_key_type_t type = type_arg; psa_algorithm_t alg = alg_arg; psa_status_t expected_export_status = expected_export_status_arg; psa_status_t status; unsigned char *exported = NULL; size_t export_size; size_t exported_length = INVALID_EXPORT_LENGTH; psa_key_type_t got_type; size_t got_bits; psa_key_policy_t policy; TEST_ASSERT( data != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( data->len ) ); export_size = (ptrdiff_t) data->len; exported = mbedtls_calloc( 1, export_size ); TEST_ASSERT( exported != NULL ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_EXPORT, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); /* Import the key */ TEST_ASSERT( psa_import_key( slot, type, data->x, data->len ) == PSA_SUCCESS ); /* Test the key information */ TEST_ASSERT( psa_get_key_information( slot, &got_type, &got_bits ) == PSA_SUCCESS ); TEST_ASSERT( got_type == type ); TEST_ASSERT( got_bits == (size_t) expected_bits ); /* Export the key */ status = psa_export_public_key( slot, exported, export_size, &exported_length ); TEST_ASSERT( status == expected_export_status ); TEST_ASSERT( exported_length == (size_t) public_key_expected_length ); TEST_ASSERT( mem_is_zero( exported + exported_length, export_size - exported_length ) ); if( status != PSA_SUCCESS ) goto destroy; destroy: /* Destroy the key */ TEST_ASSERT( psa_destroy_key( slot ) == PSA_SUCCESS ); TEST_ASSERT( psa_get_key_information( slot, NULL, NULL ) == PSA_ERROR_EMPTY_SLOT ); exit: mbedtls_free( exported ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void import_and_exercise_key( data_t *data, int type_arg, int bits_arg, int alg_arg ) { int slot = 1; psa_key_type_t type = type_arg; size_t bits = bits_arg; psa_algorithm_t alg = alg_arg; psa_key_usage_t usage = ( PSA_ALG_IS_MAC( alg ) || PSA_ALG_IS_SIGN( alg ) ? ( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) ? PSA_KEY_USAGE_VERIFY : PSA_KEY_USAGE_SIGN | PSA_KEY_USAGE_VERIFY ) : PSA_ALG_IS_CIPHER( alg ) || PSA_ALG_IS_AEAD( alg ) || PSA_ALG_IS_ASYMMETRIC_ENCRYPTION( alg ) ? ( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) ? PSA_KEY_USAGE_ENCRYPT : PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT ) : PSA_ALG_IS_KEY_DERIVATION( alg ) ? PSA_KEY_USAGE_DERIVE : 0 ); psa_key_policy_t policy; psa_key_type_t got_type; size_t got_bits; psa_status_t status; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, usage, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); /* Import the key */ status = psa_import_key( slot, type, data->x, data->len ); TEST_ASSERT( status == PSA_SUCCESS ); /* Test the key information */ TEST_ASSERT( psa_get_key_information( slot, &got_type, &got_bits ) == PSA_SUCCESS ); TEST_ASSERT( got_type == type ); TEST_ASSERT( got_bits == bits ); /* Do something with the key according to its type and permitted usage. */ if( ! exercise_key( slot, usage, alg ) ) goto exit; exit: psa_destroy_key( slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void key_policy( int usage_arg, int alg_arg ) { int key_slot = 1; psa_algorithm_t alg = alg_arg; psa_key_usage_t usage = usage_arg; psa_key_type_t key_type = PSA_KEY_TYPE_AES; unsigned char key[32] = {0}; psa_key_policy_t policy_set; psa_key_policy_t policy_get; memset( key, 0x2a, sizeof( key ) ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy_set ); psa_key_policy_init( &policy_get ); psa_key_policy_set_usage( &policy_set, usage, alg ); TEST_ASSERT( psa_key_policy_get_usage( &policy_set ) == usage ); TEST_ASSERT( psa_key_policy_get_algorithm( &policy_set ) == alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy_set ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key, sizeof( key ) ) == PSA_SUCCESS ); TEST_ASSERT( psa_get_key_policy( key_slot, &policy_get ) == PSA_SUCCESS ); TEST_ASSERT( policy_get.usage == policy_set.usage ); TEST_ASSERT( policy_get.alg == policy_set.alg ); exit: psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void mac_key_policy( int policy_usage, int policy_alg, int key_type, data_t *key_data, int exercise_alg ) { int key_slot = 1; psa_key_policy_t policy; psa_mac_operation_t operation; psa_status_t status; unsigned char mac[PSA_MAC_MAX_SIZE]; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, policy_usage, policy_alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); status = psa_mac_sign_setup( &operation, key_slot, exercise_alg ); if( policy_alg == exercise_alg && ( policy_usage & PSA_KEY_USAGE_SIGN ) != 0 ) TEST_ASSERT( status == PSA_SUCCESS ); else TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED ); psa_mac_abort( &operation ); memset( mac, 0, sizeof( mac ) ); status = psa_mac_verify_setup( &operation, key_slot, exercise_alg ); if( policy_alg == exercise_alg && ( policy_usage & PSA_KEY_USAGE_VERIFY ) != 0 ) TEST_ASSERT( status == PSA_SUCCESS ); else TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED ); exit: psa_mac_abort( &operation ); psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void cipher_key_policy( int policy_usage, int policy_alg, int key_type, data_t *key_data, int exercise_alg ) { int key_slot = 1; psa_key_policy_t policy; psa_cipher_operation_t operation; psa_status_t status; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, policy_usage, policy_alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); status = psa_cipher_encrypt_setup( &operation, key_slot, exercise_alg ); if( policy_alg == exercise_alg && ( policy_usage & PSA_KEY_USAGE_ENCRYPT ) != 0 ) TEST_ASSERT( status == PSA_SUCCESS ); else TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED ); psa_cipher_abort( &operation ); status = psa_cipher_decrypt_setup( &operation, key_slot, exercise_alg ); if( policy_alg == exercise_alg && ( policy_usage & PSA_KEY_USAGE_DECRYPT ) != 0 ) TEST_ASSERT( status == PSA_SUCCESS ); else TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED ); exit: psa_cipher_abort( &operation ); psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void aead_key_policy( int policy_usage, int policy_alg, int key_type, data_t *key_data, int nonce_length_arg, int tag_length_arg, int exercise_alg ) { int key_slot = 1; psa_key_policy_t policy; psa_status_t status; unsigned char nonce[16] = {0}; size_t nonce_length = nonce_length_arg; unsigned char tag[16]; size_t tag_length = tag_length_arg; size_t output_length; TEST_ASSERT( nonce_length <= sizeof( nonce ) ); TEST_ASSERT( tag_length <= sizeof( tag ) ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, policy_usage, policy_alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); status = psa_aead_encrypt( key_slot, exercise_alg, nonce, nonce_length, NULL, 0, NULL, 0, tag, tag_length, &output_length ); if( policy_alg == exercise_alg && ( policy_usage & PSA_KEY_USAGE_ENCRYPT ) != 0 ) TEST_ASSERT( status == PSA_SUCCESS ); else TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED ); memset( tag, 0, sizeof( tag ) ); status = psa_aead_decrypt( key_slot, exercise_alg, nonce, nonce_length, NULL, 0, tag, tag_length, NULL, 0, &output_length ); if( policy_alg == exercise_alg && ( policy_usage & PSA_KEY_USAGE_DECRYPT ) != 0 ) TEST_ASSERT( status == PSA_ERROR_INVALID_SIGNATURE ); else TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED ); exit: psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void asymmetric_encryption_key_policy( int policy_usage, int policy_alg, int key_type, data_t *key_data, int exercise_alg ) { int key_slot = 1; psa_key_policy_t policy; psa_status_t status; size_t key_bits; size_t buffer_length; unsigned char *buffer = NULL; size_t output_length; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, policy_usage, policy_alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_get_key_information( key_slot, NULL, &key_bits ) == PSA_SUCCESS ); buffer_length = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE( key_type, key_bits, exercise_alg ); buffer = mbedtls_calloc( 1, buffer_length ); TEST_ASSERT( buffer != NULL ); status = psa_asymmetric_encrypt( key_slot, exercise_alg, NULL, 0, NULL, 0, buffer, buffer_length, &output_length ); if( policy_alg == exercise_alg && ( policy_usage & PSA_KEY_USAGE_ENCRYPT ) != 0 ) TEST_ASSERT( status == PSA_SUCCESS ); else TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED ); memset( buffer, 0, buffer_length ); status = psa_asymmetric_decrypt( key_slot, exercise_alg, buffer, buffer_length, NULL, 0, buffer, buffer_length, &output_length ); if( policy_alg == exercise_alg && ( policy_usage & PSA_KEY_USAGE_DECRYPT ) != 0 ) TEST_ASSERT( status == PSA_ERROR_INVALID_PADDING ); else TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED ); exit: psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); mbedtls_free( buffer ); } /* END_CASE */ /* BEGIN_CASE */ void asymmetric_signature_key_policy( int policy_usage, int policy_alg, int key_type, data_t *key_data, int exercise_alg ) { int key_slot = 1; psa_key_policy_t policy; psa_status_t status; unsigned char payload[16] = {1}; size_t payload_length = sizeof( payload ); unsigned char signature[PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE] = {0}; size_t signature_length; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, policy_usage, policy_alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); status = psa_asymmetric_sign( key_slot, exercise_alg, payload, payload_length, signature, sizeof( signature ), &signature_length ); if( policy_alg == exercise_alg && ( policy_usage & PSA_KEY_USAGE_SIGN ) != 0 ) TEST_ASSERT( status == PSA_SUCCESS ); else TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED ); memset( signature, 0, sizeof( signature ) ); status = psa_asymmetric_verify( key_slot, exercise_alg, payload, payload_length, signature, sizeof( signature ) ); if( policy_alg == exercise_alg && ( policy_usage & PSA_KEY_USAGE_VERIFY ) != 0 ) TEST_ASSERT( status == PSA_ERROR_INVALID_SIGNATURE ); else TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED ); exit: psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void derive_key_policy( int policy_usage, int policy_alg, int key_type, data_t *key_data, int exercise_alg ) { int key_slot = 1; psa_key_policy_t policy; psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT; psa_status_t status; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, policy_usage, policy_alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); status = psa_key_derivation( &generator, key_slot, exercise_alg, NULL, 0, NULL, 0, 1 ); if( policy_alg == exercise_alg && ( policy_usage & PSA_KEY_USAGE_DERIVE ) != 0 ) TEST_ASSERT( status == PSA_SUCCESS ); else TEST_ASSERT( status == PSA_ERROR_NOT_PERMITTED ); exit: psa_generator_abort( &generator ); psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void key_lifetime( int lifetime_arg ) { int key_slot = 1; psa_key_type_t key_type = PSA_ALG_CBC_BASE; unsigned char key[32] = {0}; psa_key_lifetime_t lifetime_set = lifetime_arg; psa_key_lifetime_t lifetime_get; memset( key, 0x2a, sizeof( key ) ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); TEST_ASSERT( psa_set_key_lifetime( key_slot, lifetime_set ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key, sizeof( key ) ) == PSA_SUCCESS ); TEST_ASSERT( psa_get_key_lifetime( key_slot, &lifetime_get ) == PSA_SUCCESS ); TEST_ASSERT( lifetime_get == lifetime_set ); exit: psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void key_lifetime_set_fail( int key_slot_arg, int lifetime_arg, int expected_status_arg ) { psa_key_slot_t key_slot = key_slot_arg; psa_key_lifetime_t lifetime_set = lifetime_arg; psa_status_t actual_status; psa_status_t expected_status = expected_status_arg; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); actual_status = psa_set_key_lifetime( key_slot, lifetime_set ); if( actual_status == PSA_SUCCESS ) actual_status = psa_set_key_lifetime( key_slot, lifetime_set ); TEST_ASSERT( expected_status == actual_status ); exit: psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void hash_setup( int alg_arg, int expected_status_arg ) { psa_algorithm_t alg = alg_arg; psa_status_t expected_status = expected_status_arg; psa_hash_operation_t operation; psa_status_t status; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); status = psa_hash_setup( &operation, alg ); psa_hash_abort( &operation ); TEST_ASSERT( status == expected_status ); exit: mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void hash_finish( int alg_arg, data_t *input, data_t *expected_hash ) { psa_algorithm_t alg = alg_arg; unsigned char actual_hash[PSA_HASH_MAX_SIZE]; size_t actual_hash_length; psa_hash_operation_t operation; TEST_ASSERT( expected_hash->len == PSA_HASH_SIZE( alg ) ); TEST_ASSERT( expected_hash->len <= PSA_HASH_MAX_SIZE ); TEST_ASSERT( input != NULL ); TEST_ASSERT( expected_hash != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_hash->len ) ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); TEST_ASSERT( psa_hash_setup( &operation, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_hash_update( &operation, input->x, input->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_hash_finish( &operation, actual_hash, sizeof( actual_hash ), &actual_hash_length ) == PSA_SUCCESS ); TEST_ASSERT( actual_hash_length == expected_hash->len ); TEST_ASSERT( memcmp( expected_hash->x, actual_hash, expected_hash->len ) == 0 ); exit: mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void hash_verify( int alg_arg, data_t *input, data_t *expected_hash ) { psa_algorithm_t alg = alg_arg; psa_hash_operation_t operation; TEST_ASSERT( expected_hash->len == PSA_HASH_SIZE( alg ) ); TEST_ASSERT( expected_hash->len <= PSA_HASH_MAX_SIZE ); TEST_ASSERT( input != NULL ); TEST_ASSERT( expected_hash != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_hash->len ) ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); TEST_ASSERT( psa_hash_setup( &operation, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_hash_update( &operation, input->x, input->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_hash_verify( &operation, expected_hash->x, expected_hash->len ) == PSA_SUCCESS ); exit: mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void mac_setup( int key_type_arg, data_t *key, int alg_arg, int expected_status_arg ) { int key_slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; psa_status_t expected_status = expected_status_arg; psa_mac_operation_t operation; psa_key_policy_t policy; psa_status_t status; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_SIGN | PSA_KEY_USAGE_VERIFY, alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key->x, key->len ) == PSA_SUCCESS ); status = psa_mac_sign_setup( &operation, key_slot, alg ); psa_mac_abort( &operation ); TEST_ASSERT( status == expected_status ); exit: psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void mac_verify( int key_type_arg, data_t *key, int alg_arg, data_t *input, data_t *expected_mac ) { int key_slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; psa_mac_operation_t operation; psa_key_policy_t policy; TEST_ASSERT( expected_mac->len <= PSA_MAC_MAX_SIZE ); TEST_ASSERT( key != NULL ); TEST_ASSERT( input != NULL ); TEST_ASSERT( expected_mac != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_mac->len ) ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_VERIFY, alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key->x, key->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_mac_verify_setup( &operation, key_slot, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_destroy_key( key_slot ) == PSA_SUCCESS ); TEST_ASSERT( psa_mac_update( &operation, input->x, input->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_mac_verify_finish( &operation, expected_mac->x, expected_mac->len ) == PSA_SUCCESS ); exit: psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void cipher_setup( int key_type_arg, data_t *key, int alg_arg, int expected_status_arg ) { int key_slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; psa_status_t expected_status = expected_status_arg; psa_cipher_operation_t operation; psa_key_policy_t policy; psa_status_t status; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT, alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key->x, key->len ) == PSA_SUCCESS ); status = psa_cipher_encrypt_setup( &operation, key_slot, alg ); psa_cipher_abort( &operation ); TEST_ASSERT( status == expected_status ); exit: psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void cipher_encrypt( int alg_arg, int key_type_arg, data_t *key, data_t *input, data_t *expected_output, int expected_status_arg ) { int key_slot = 1; psa_status_t status; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; psa_status_t expected_status = expected_status_arg; unsigned char iv[16] = {0}; size_t iv_size; unsigned char *output = NULL; size_t output_buffer_size = 0; size_t function_output_length = 0; size_t total_output_length = 0; psa_cipher_operation_t operation; psa_key_policy_t policy; TEST_ASSERT( key != NULL ); TEST_ASSERT( input != NULL ); TEST_ASSERT( expected_output != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_output->len ) ); iv_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ); memset( iv, 0x2a, iv_size ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT, alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key->x, key->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_encrypt_setup( &operation, key_slot, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_set_iv( &operation, iv, iv_size ) == PSA_SUCCESS ); output_buffer_size = (size_t) input->len + PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ); output = mbedtls_calloc( 1, output_buffer_size ); TEST_ASSERT( output != NULL ); TEST_ASSERT( psa_cipher_update( &operation, input->x, input->len, output, output_buffer_size, &function_output_length ) == PSA_SUCCESS ); total_output_length += function_output_length; status = psa_cipher_finish( &operation, output + function_output_length, output_buffer_size, &function_output_length ); total_output_length += function_output_length; TEST_ASSERT( status == expected_status ); if( expected_status == PSA_SUCCESS ) { TEST_ASSERT( psa_cipher_abort( &operation ) == PSA_SUCCESS ); TEST_ASSERT( total_output_length == expected_output->len ); TEST_ASSERT( memcmp( expected_output->x, output, expected_output->len ) == 0 ); } exit: mbedtls_free( output ); psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void cipher_encrypt_multipart( int alg_arg, int key_type_arg, data_t *key, data_t *input, int first_part_size, data_t *expected_output ) { int key_slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; unsigned char iv[16] = {0}; size_t iv_size; unsigned char *output = NULL; size_t output_buffer_size = 0; size_t function_output_length = 0; size_t total_output_length = 0; psa_cipher_operation_t operation; psa_key_policy_t policy; TEST_ASSERT( key != NULL ); TEST_ASSERT( input != NULL ); TEST_ASSERT( expected_output != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_output->len ) ); iv_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ); memset( iv, 0x2a, iv_size ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT, alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key->x, key->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_encrypt_setup( &operation, key_slot, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_set_iv( &operation, iv, sizeof( iv ) ) == PSA_SUCCESS ); output_buffer_size = (size_t) input->len + PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ); output = mbedtls_calloc( 1, output_buffer_size ); TEST_ASSERT( output != NULL ); TEST_ASSERT( (unsigned int) first_part_size < input->len ); TEST_ASSERT( psa_cipher_update( &operation, input->x, first_part_size, output, output_buffer_size, &function_output_length ) == PSA_SUCCESS ); total_output_length += function_output_length; TEST_ASSERT( psa_cipher_update( &operation, input->x + first_part_size, input->len - first_part_size, output, output_buffer_size, &function_output_length ) == PSA_SUCCESS ); total_output_length += function_output_length; TEST_ASSERT( psa_cipher_finish( &operation, output + function_output_length, output_buffer_size, &function_output_length ) == PSA_SUCCESS ); total_output_length += function_output_length; TEST_ASSERT( psa_cipher_abort( &operation ) == PSA_SUCCESS ); TEST_ASSERT( total_output_length == expected_output->len ); TEST_ASSERT( memcmp( expected_output->x, output, expected_output->len ) == 0 ); exit: mbedtls_free( output ); psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void cipher_decrypt_multipart( int alg_arg, int key_type_arg, data_t *key, data_t *input, int first_part_size, data_t *expected_output ) { int key_slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; unsigned char iv[16] = {0}; size_t iv_size; unsigned char *output = NULL; size_t output_buffer_size = 0; size_t function_output_length = 0; size_t total_output_length = 0; psa_cipher_operation_t operation; psa_key_policy_t policy; TEST_ASSERT( key != NULL ); TEST_ASSERT( input != NULL ); TEST_ASSERT( expected_output != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_output->len ) ); iv_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ); memset( iv, 0x2a, iv_size ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT, alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key->x, key->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_decrypt_setup( &operation, key_slot, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_set_iv( &operation, iv, sizeof( iv ) ) == PSA_SUCCESS ); output_buffer_size = (size_t) input->len + PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ); output = mbedtls_calloc( 1, output_buffer_size ); TEST_ASSERT( output != NULL ); TEST_ASSERT( (unsigned int) first_part_size < input->len ); TEST_ASSERT( psa_cipher_update( &operation, input->x, first_part_size, output, output_buffer_size, &function_output_length ) == PSA_SUCCESS ); total_output_length += function_output_length; TEST_ASSERT( psa_cipher_update( &operation, input->x + first_part_size, input->len - first_part_size, output, output_buffer_size, &function_output_length ) == PSA_SUCCESS ); total_output_length += function_output_length; TEST_ASSERT( psa_cipher_finish( &operation, output + function_output_length, output_buffer_size, &function_output_length ) == PSA_SUCCESS ); total_output_length += function_output_length; TEST_ASSERT( psa_cipher_abort( &operation ) == PSA_SUCCESS ); TEST_ASSERT( total_output_length == expected_output->len ); TEST_ASSERT( memcmp( expected_output->x, output, expected_output->len ) == 0 ); exit: mbedtls_free( output ); psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void cipher_decrypt( int alg_arg, int key_type_arg, data_t *key, data_t *input, data_t *expected_output, int expected_status_arg ) { int key_slot = 1; psa_status_t status; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; psa_status_t expected_status = expected_status_arg; unsigned char iv[16] = {0}; size_t iv_size; unsigned char *output = NULL; size_t output_buffer_size = 0; size_t function_output_length = 0; size_t total_output_length = 0; psa_cipher_operation_t operation; psa_key_policy_t policy; TEST_ASSERT( key != NULL ); TEST_ASSERT( input != NULL ); TEST_ASSERT( expected_output != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_output->len ) ); iv_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ); memset( iv, 0x2a, iv_size ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT, alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key->x, key->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_decrypt_setup( &operation, key_slot, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_set_iv( &operation, iv, iv_size ) == PSA_SUCCESS ); output_buffer_size = (size_t) input->len + PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ); output = mbedtls_calloc( 1, output_buffer_size ); TEST_ASSERT( output != NULL ); TEST_ASSERT( psa_cipher_update( &operation, input->x, input->len, output, output_buffer_size, &function_output_length ) == PSA_SUCCESS ); total_output_length += function_output_length; status = psa_cipher_finish( &operation, output + function_output_length, output_buffer_size, &function_output_length ); total_output_length += function_output_length; TEST_ASSERT( status == expected_status ); if( expected_status == PSA_SUCCESS ) { TEST_ASSERT( psa_cipher_abort( &operation ) == PSA_SUCCESS ); TEST_ASSERT( total_output_length == expected_output->len ); TEST_ASSERT( memcmp( expected_output->x, output, expected_output->len ) == 0 ); } exit: mbedtls_free( output ); psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void cipher_verify_output( int alg_arg, int key_type_arg, data_t *key, data_t *input ) { int key_slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; unsigned char iv[16] = {0}; size_t iv_size = 16; size_t iv_length = 0; unsigned char *output1 = NULL; size_t output1_size = 0; size_t output1_length = 0; unsigned char *output2 = NULL; size_t output2_size = 0; size_t output2_length = 0; size_t function_output_length = 0; psa_cipher_operation_t operation1; psa_cipher_operation_t operation2; psa_key_policy_t policy; TEST_ASSERT( key != NULL ); TEST_ASSERT( input != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT, alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key->x, key->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_encrypt_setup( &operation1, key_slot, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_decrypt_setup( &operation2, key_slot, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_generate_iv( &operation1, iv, iv_size, &iv_length ) == PSA_SUCCESS ); output1_size = (size_t) input->len + PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ); output1 = mbedtls_calloc( 1, output1_size ); TEST_ASSERT( output1 != NULL ); TEST_ASSERT( psa_cipher_update( &operation1, input->x, input->len, output1, output1_size, &output1_length ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_finish( &operation1, output1 + output1_length, output1_size, &function_output_length ) == PSA_SUCCESS ); output1_length += function_output_length; TEST_ASSERT( psa_cipher_abort( &operation1 ) == PSA_SUCCESS ); output2_size = output1_length; output2 = mbedtls_calloc( 1, output2_size ); TEST_ASSERT( output2 != NULL ); TEST_ASSERT( psa_cipher_set_iv( &operation2, iv, iv_length ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_update( &operation2, output1, output1_length, output2, output2_size, &output2_length ) == PSA_SUCCESS ); function_output_length = 0; TEST_ASSERT( psa_cipher_finish( &operation2, output2 + output2_length, output2_size, &function_output_length ) == PSA_SUCCESS ); output2_length += function_output_length; TEST_ASSERT( psa_cipher_abort( &operation2 ) == PSA_SUCCESS ); TEST_ASSERT( input->len == output2_length ); TEST_ASSERT( memcmp( input->x, output2, input->len ) == 0 ); exit: mbedtls_free( output1 ); mbedtls_free( output2 ); psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void cipher_verify_output_multipart( int alg_arg, int key_type_arg, data_t *key, data_t *input, int first_part_size ) { int key_slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; unsigned char iv[16] = {0}; size_t iv_size = 16; size_t iv_length = 0; unsigned char *output1 = NULL; size_t output1_buffer_size = 0; size_t output1_length = 0; unsigned char *output2 = NULL; size_t output2_buffer_size = 0; size_t output2_length = 0; size_t function_output_length; psa_cipher_operation_t operation1; psa_cipher_operation_t operation2; psa_key_policy_t policy; TEST_ASSERT( key != NULL ); TEST_ASSERT( input != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT, alg ); TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( key_slot, key_type, key->x, key->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_encrypt_setup( &operation1, key_slot, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_decrypt_setup( &operation2, key_slot, alg ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_generate_iv( &operation1, iv, iv_size, &iv_length ) == PSA_SUCCESS ); output1_buffer_size = (size_t) input->len + PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ); output1 = mbedtls_calloc( 1, output1_buffer_size ); TEST_ASSERT( output1 != NULL ); TEST_ASSERT( (unsigned int) first_part_size < input->len ); TEST_ASSERT( psa_cipher_update( &operation1, input->x, first_part_size, output1, output1_buffer_size, &function_output_length ) == PSA_SUCCESS ); output1_length += function_output_length; TEST_ASSERT( psa_cipher_update( &operation1, input->x + first_part_size, input->len - first_part_size, output1, output1_buffer_size, &function_output_length ) == PSA_SUCCESS ); output1_length += function_output_length; TEST_ASSERT( psa_cipher_finish( &operation1, output1 + output1_length, output1_buffer_size - output1_length, &function_output_length ) == PSA_SUCCESS ); output1_length += function_output_length; TEST_ASSERT( psa_cipher_abort( &operation1 ) == PSA_SUCCESS ); output2_buffer_size = output1_length; output2 = mbedtls_calloc( 1, output2_buffer_size ); TEST_ASSERT( output2 != NULL ); TEST_ASSERT( psa_cipher_set_iv( &operation2, iv, iv_length ) == PSA_SUCCESS ); TEST_ASSERT( psa_cipher_update( &operation2, output1, first_part_size, output2, output2_buffer_size, &function_output_length ) == PSA_SUCCESS ); output2_length += function_output_length; TEST_ASSERT( psa_cipher_update( &operation2, output1 + first_part_size, output1_length - first_part_size, output2, output2_buffer_size, &function_output_length ) == PSA_SUCCESS ); output2_length += function_output_length; TEST_ASSERT( psa_cipher_finish( &operation2, output2 + output2_length, output2_buffer_size - output2_length, &function_output_length ) == PSA_SUCCESS ); output2_length += function_output_length; TEST_ASSERT( psa_cipher_abort( &operation2 ) == PSA_SUCCESS ); TEST_ASSERT( input->len == output2_length ); TEST_ASSERT( memcmp( input->x, output2, input->len ) == 0 ); exit: mbedtls_free( output1 ); mbedtls_free( output2 ); psa_destroy_key( key_slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void aead_encrypt_decrypt( int key_type_arg, data_t * key_data, int alg_arg, data_t * input_data, data_t * nonce, data_t * additional_data, int expected_result_arg ) { int slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; unsigned char *output_data = NULL; size_t output_size = 0; size_t output_length = 0; unsigned char *output_data2 = NULL; size_t output_length2 = 0; size_t tag_length = 16; psa_status_t expected_result = expected_result_arg; psa_key_policy_t policy; TEST_ASSERT( key_data != NULL ); TEST_ASSERT( input_data != NULL ); TEST_ASSERT( nonce != NULL ); TEST_ASSERT( additional_data != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( nonce->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( additional_data->len ) ); output_size = input_data->len + tag_length; output_data = mbedtls_calloc( 1, output_size ); TEST_ASSERT( output_data != NULL ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_aead_encrypt( slot, alg, nonce->x, nonce->len, additional_data->x, additional_data->len, input_data->x, input_data->len, output_data, output_size, &output_length ) == expected_result ); if( PSA_SUCCESS == expected_result ) { output_data2 = mbedtls_calloc( 1, output_length ); TEST_ASSERT( output_data2 != NULL ); TEST_ASSERT( psa_aead_decrypt( slot, alg, nonce->x, nonce->len, additional_data->x, additional_data->len, output_data, output_length, output_data2, output_length, &output_length2 ) == expected_result ); TEST_ASSERT( memcmp( input_data->x, output_data2, input_data->len ) == 0 ); } exit: psa_destroy_key( slot ); mbedtls_free( output_data ); mbedtls_free( output_data2 ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void aead_encrypt( int key_type_arg, data_t * key_data, int alg_arg, data_t * input_data, data_t * additional_data, data_t * nonce, data_t * expected_result ) { int slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; unsigned char *output_data = NULL; size_t output_size = 0; size_t output_length = 0; size_t tag_length = 16; psa_key_policy_t policy; TEST_ASSERT( key_data != NULL ); TEST_ASSERT( input_data != NULL ); TEST_ASSERT( additional_data != NULL ); TEST_ASSERT( nonce != NULL ); TEST_ASSERT( expected_result != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( additional_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( nonce->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_result->len ) ); output_size = input_data->len + tag_length; output_data = mbedtls_calloc( 1, output_size ); TEST_ASSERT( output_data != NULL ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT , alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_aead_encrypt( slot, alg, nonce->x, nonce->len, additional_data->x, additional_data->len, input_data->x, input_data->len, output_data, output_size, &output_length ) == PSA_SUCCESS ); TEST_ASSERT( memcmp( output_data, expected_result->x, output_length ) == 0 ); exit: psa_destroy_key( slot ); mbedtls_free( output_data ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void aead_decrypt( int key_type_arg, data_t * key_data, int alg_arg, data_t * input_data, data_t * additional_data, data_t * nonce, data_t * expected_data, int expected_result_arg ) { int slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; unsigned char *output_data = NULL; size_t output_size = 0; size_t output_length = 0; size_t tag_length = 16; psa_key_policy_t policy; psa_status_t expected_result = expected_result_arg; TEST_ASSERT( key_data != NULL ); TEST_ASSERT( input_data != NULL ); TEST_ASSERT( additional_data != NULL ); TEST_ASSERT( nonce != NULL ); TEST_ASSERT( expected_data != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( additional_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( nonce->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_data->len ) ); output_size = input_data->len + tag_length; output_data = mbedtls_calloc( 1, output_size ); TEST_ASSERT( output_data != NULL ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT , alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_aead_decrypt( slot, alg, nonce->x, nonce->len, additional_data->x, additional_data->len, input_data->x, input_data->len, output_data, output_size, &output_length ) == expected_result ); if( expected_result == PSA_SUCCESS ) { TEST_ASSERT( memcmp( output_data, expected_data->x, output_length ) == 0 ); } exit: psa_destroy_key( slot ); mbedtls_free( output_data ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void signature_size( int type_arg, int bits, int alg_arg, int expected_size_arg ) { psa_key_type_t type = type_arg; psa_algorithm_t alg = alg_arg; size_t actual_size = PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE( type, bits, alg ); TEST_ASSERT( actual_size == (size_t) expected_size_arg ); exit: ; } /* END_CASE */ /* BEGIN_CASE */ void sign_deterministic( int key_type_arg, data_t *key_data, int alg_arg, data_t *input_data, data_t *output_data ) { int slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; size_t key_bits; unsigned char *signature = NULL; size_t signature_size; size_t signature_length = 0xdeadbeef; psa_key_policy_t policy; TEST_ASSERT( key_data != NULL ); TEST_ASSERT( input_data != NULL ); TEST_ASSERT( output_data != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( output_data->len ) ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_SIGN, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_get_key_information( slot, NULL, &key_bits ) == PSA_SUCCESS ); /* Allocate a buffer which has the size advertized by the * library. */ signature_size = PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE( key_type, key_bits, alg ); TEST_ASSERT( signature_size != 0 ); TEST_ASSERT( signature_size <= PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE ); signature = mbedtls_calloc( 1, signature_size ); TEST_ASSERT( signature != NULL ); /* Perform the signature. */ TEST_ASSERT( psa_asymmetric_sign( slot, alg, input_data->x, input_data->len, signature, signature_size, &signature_length ) == PSA_SUCCESS ); /* Verify that the signature is what is expected. */ TEST_ASSERT( signature_length == output_data->len ); TEST_ASSERT( memcmp( signature, output_data->x, output_data->len ) == 0 ); exit: psa_destroy_key( slot ); mbedtls_free( signature ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void sign_fail( int key_type_arg, data_t *key_data, int alg_arg, data_t *input_data, int signature_size_arg, int expected_status_arg ) { int slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; size_t signature_size = signature_size_arg; psa_status_t actual_status; psa_status_t expected_status = expected_status_arg; unsigned char *signature = NULL; size_t signature_length = 0xdeadbeef; psa_key_policy_t policy; TEST_ASSERT( key_data != NULL ); TEST_ASSERT( input_data != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) ); signature = mbedtls_calloc( 1, signature_size ); TEST_ASSERT( signature != NULL ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_SIGN, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); actual_status = psa_asymmetric_sign( slot, alg, input_data->x, input_data->len, signature, signature_size, &signature_length ); TEST_ASSERT( actual_status == expected_status ); /* The value of *signature_length is unspecified on error, but * whatever it is, it should be less than signature_size, so that * if the caller tries to read *signature_length bytes without * checking the error code then they don't overflow a buffer. */ TEST_ASSERT( signature_length <= signature_size ); exit: psa_destroy_key( slot ); mbedtls_free( signature ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void sign_verify( int key_type_arg, data_t *key_data, int alg_arg, data_t *input_data ) { int slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; size_t key_bits; unsigned char *signature = NULL; size_t signature_size; size_t signature_length = 0xdeadbeef; psa_key_policy_t policy; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_SIGN | PSA_KEY_USAGE_VERIFY, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_get_key_information( slot, NULL, &key_bits ) == PSA_SUCCESS ); /* Allocate a buffer which has the size advertized by the * library. */ signature_size = PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE( key_type, key_bits, alg ); TEST_ASSERT( signature_size != 0 ); TEST_ASSERT( signature_size <= PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE ); signature = mbedtls_calloc( 1, signature_size ); TEST_ASSERT( signature != NULL ); /* Perform the signature. */ TEST_ASSERT( psa_asymmetric_sign( slot, alg, input_data->x, input_data->len, signature, signature_size, &signature_length ) == PSA_SUCCESS ); /* Check that the signature length looks sensible. */ TEST_ASSERT( signature_length <= signature_size ); TEST_ASSERT( signature_length > 0 ); /* Use the library to verify that the signature is correct. */ TEST_ASSERT( psa_asymmetric_verify( slot, alg, input_data->x, input_data->len, signature, signature_length ) == PSA_SUCCESS ); if( input_data->len != 0 ) { /* Flip a bit in the input and verify that the signature is now * detected as invalid. Flip a bit at the beginning, not at the end, * because ECDSA may ignore the last few bits of the input. */ input_data->x[0] ^= 1; TEST_ASSERT( psa_asymmetric_verify( slot, alg, input_data->x, input_data->len, signature, signature_length ) == PSA_ERROR_INVALID_SIGNATURE ); } exit: psa_destroy_key( slot ); mbedtls_free( signature ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void asymmetric_verify( int key_type_arg, data_t *key_data, int alg_arg, data_t *hash_data, data_t *signature_data ) { int slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; psa_key_policy_t policy; TEST_ASSERT( signature_data->len <= PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE ); TEST_ASSERT( key_data != NULL ); TEST_ASSERT( hash_data != NULL ); TEST_ASSERT( signature_data != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( hash_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( signature_data->len ) ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_VERIFY, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_asymmetric_verify( slot, alg, hash_data->x, hash_data->len, signature_data->x, signature_data->len ) == PSA_SUCCESS ); exit: psa_destroy_key( slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void asymmetric_verify_fail( int key_type_arg, data_t *key_data, int alg_arg, data_t *hash_data, data_t *signature_data, int expected_status_arg ) { int slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; psa_status_t actual_status; psa_status_t expected_status = expected_status_arg; psa_key_policy_t policy; TEST_ASSERT( key_data != NULL ); TEST_ASSERT( hash_data != NULL ); TEST_ASSERT( signature_data != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( hash_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( signature_data->len ) ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_VERIFY, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); actual_status = psa_asymmetric_verify( slot, alg, hash_data->x, hash_data->len, signature_data->x, signature_data->len ); TEST_ASSERT( actual_status == expected_status ); exit: psa_destroy_key( slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void asymmetric_encrypt( int key_type_arg, data_t *key_data, int alg_arg, data_t *input_data, data_t *label, int expected_output_length_arg, int expected_status_arg ) { int slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; size_t expected_output_length = expected_output_length_arg; size_t key_bits; unsigned char *output = NULL; size_t output_size; size_t output_length = ~0; psa_status_t actual_status; psa_status_t expected_status = expected_status_arg; psa_key_policy_t policy; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); /* Import the key */ psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); /* Determine the maximum output length */ TEST_ASSERT( psa_get_key_information( slot, NULL, &key_bits ) == PSA_SUCCESS ); output_size = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE( key_type, key_bits, alg ); output = mbedtls_calloc( 1, output_size ); TEST_ASSERT( output_size == 0 || output != NULL ); /* Encrypt the input */ actual_status = psa_asymmetric_encrypt( slot, alg, input_data->x, input_data->len, label->x, label->len, output, output_size, &output_length ); TEST_ASSERT( actual_status == expected_status ); TEST_ASSERT( output_length == expected_output_length ); /* If the label is empty, the test framework puts a non-null pointer * in label->x. Test that a null pointer works as well. */ if( label->len == 0 ) { output_length = ~0; memset( output, 0, output_size ); actual_status = psa_asymmetric_encrypt( slot, alg, input_data->x, input_data->len, NULL, label->len, output, output_size, &output_length ); TEST_ASSERT( actual_status == expected_status ); TEST_ASSERT( output_length == expected_output_length ); } exit: psa_destroy_key( slot ); mbedtls_free( output ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void asymmetric_encrypt_decrypt( int key_type_arg, data_t *key_data, int alg_arg, data_t *input_data, data_t *label ) { int slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; size_t key_bits; unsigned char *output = NULL; size_t output_size; size_t output_length = ~0; unsigned char *output2 = NULL; size_t output2_size; size_t output2_length = ~0; psa_key_policy_t policy; TEST_ASSERT( key_data != NULL ); TEST_ASSERT( input_data != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); /* Determine the maximum ciphertext length */ TEST_ASSERT( psa_get_key_information( slot, NULL, &key_bits ) == PSA_SUCCESS ); output_size = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE( key_type, key_bits, alg ); output = mbedtls_calloc( 1, output_size ); TEST_ASSERT( output != NULL ); output2_size = input_data->len; output2 = mbedtls_calloc( 1, output2_size ); TEST_ASSERT( output2 != NULL ); /* We test encryption by checking that encrypt-then-decrypt gives back * the original plaintext because of the non-optional random * part of encryption process which prevents using fixed vectors. */ TEST_ASSERT( psa_asymmetric_encrypt( slot, alg, input_data->x, input_data->len, label->x, label->len, output, output_size, &output_length ) == PSA_SUCCESS ); /* We don't know what ciphertext length to expect, but check that * it looks sensible. */ TEST_ASSERT( output_length <= output_size ); TEST_ASSERT( psa_asymmetric_decrypt( slot, alg, output, output_length, label->x, label->len, output2, output2_size, &output2_length ) == PSA_SUCCESS ); TEST_ASSERT( output2_length == input_data->len ); TEST_ASSERT( memcmp( input_data->x, output2, input_data->len ) == 0 ); exit: psa_destroy_key( slot ); mbedtls_free( output ); mbedtls_free( output2 ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void asymmetric_decrypt( int key_type_arg, data_t *key_data, int alg_arg, data_t *input_data, data_t *label, data_t *expected_data ) { int slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; unsigned char *output = NULL; size_t output_size = 0; size_t output_length = ~0; psa_key_policy_t policy; TEST_ASSERT( key_data != NULL ); TEST_ASSERT( input_data != NULL ); TEST_ASSERT( expected_data != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_data->len ) ); output_size = key_data->len; output = mbedtls_calloc( 1, output_size ); TEST_ASSERT( output != NULL ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_asymmetric_decrypt( slot, alg, input_data->x, input_data->len, label->x, label->len, output, output_size, &output_length ) == PSA_SUCCESS ); TEST_ASSERT( expected_data->len == output_length ); TEST_ASSERT( memcmp( expected_data->x, output, output_length ) == 0 ); /* If the label is empty, the test framework puts a non-null pointer * in label->x. Test that a null pointer works as well. */ if( label->len == 0 ) { output_length = ~0; memset( output, 0, output_size ); TEST_ASSERT( psa_asymmetric_decrypt( slot, alg, input_data->x, input_data->len, NULL, label->len, output, output_size, &output_length ) == PSA_SUCCESS ); TEST_ASSERT( expected_data->len == output_length ); TEST_ASSERT( memcmp( expected_data->x, output, output_length ) == 0 ); } exit: psa_destroy_key( slot ); mbedtls_free( output ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void asymmetric_decrypt_fail( int key_type_arg, data_t *key_data, int alg_arg, data_t *input_data, data_t *label, int expected_status_arg ) { int slot = 1; psa_key_type_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; unsigned char *output = NULL; size_t output_size = 0; size_t output_length = ~0; psa_status_t actual_status; psa_status_t expected_status = expected_status_arg; psa_key_policy_t policy; TEST_ASSERT( key_data != NULL ); TEST_ASSERT( input_data != NULL ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) ); TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) ); output_size = key_data->len; output = mbedtls_calloc( 1, output_size ); TEST_ASSERT( output != NULL ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); actual_status = psa_asymmetric_decrypt( slot, alg, input_data->x, input_data->len, label->x, label->len, output, output_size, &output_length ); TEST_ASSERT( actual_status == expected_status ); TEST_ASSERT( output_length <= output_size ); /* If the label is empty, the test framework puts a non-null pointer * in label->x. Test that a null pointer works as well. */ if( label->len == 0 ) { output_length = ~0; memset( output, 0, output_size ); actual_status = psa_asymmetric_decrypt( slot, alg, input_data->x, input_data->len, NULL, label->len, output, output_size, &output_length ); TEST_ASSERT( actual_status == expected_status ); TEST_ASSERT( output_length <= output_size ); } exit: psa_destroy_key( slot ); mbedtls_free( output ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void derive_setup( int key_type_arg, data_t *key_data, int alg_arg, data_t *salt, data_t *label, int requested_capacity_arg, int expected_status_arg ) { psa_key_slot_t slot = 1; size_t key_type = key_type_arg; psa_algorithm_t alg = alg_arg; size_t requested_capacity = requested_capacity_arg; psa_status_t expected_status = expected_status_arg; psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT; psa_key_policy_t policy; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DERIVE, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, key_type, key_data->x, key_data->len ) == PSA_SUCCESS ); TEST_ASSERT( psa_key_derivation( &generator, slot, alg, salt->x, salt->len, label->x, label->len, requested_capacity ) == expected_status ); exit: psa_generator_abort( &generator ); psa_destroy_key( slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void derive_output( int alg_arg, data_t *key_data, data_t *salt, data_t *label, int requested_capacity_arg, data_t *expected_output1, data_t *expected_output2 ) { psa_key_slot_t slot = 1; psa_algorithm_t alg = alg_arg; size_t requested_capacity = requested_capacity_arg; psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT; uint8_t *expected_outputs[2] = {expected_output1->x, expected_output2->x}; size_t output_sizes[2] = {expected_output1->len, expected_output2->len}; size_t output_buffer_size = 0; uint8_t *output_buffer = NULL; size_t expected_capacity; size_t current_capacity; psa_key_policy_t policy; psa_status_t status; unsigned i; for( i = 0; i < ARRAY_LENGTH( expected_outputs ); i++ ) { if( output_sizes[i] > output_buffer_size ) output_buffer_size = output_sizes[i]; if( output_sizes[i] == 0 ) expected_outputs[i] = NULL; } output_buffer = mbedtls_calloc( 1, output_buffer_size ); TEST_ASSERT( output_buffer != NULL ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DERIVE, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, PSA_KEY_TYPE_DERIVE, key_data->x, key_data->len ) == PSA_SUCCESS ); /* Extraction phase. */ TEST_ASSERT( psa_key_derivation( &generator, slot, alg, salt->x, salt->len, label->x, label->len, requested_capacity ) == PSA_SUCCESS ); TEST_ASSERT( psa_get_generator_capacity( &generator, ¤t_capacity ) == PSA_SUCCESS ); TEST_ASSERT( current_capacity == requested_capacity ); expected_capacity = requested_capacity; /* Expansion phase. */ for( i = 0; i < ARRAY_LENGTH( expected_outputs ); i++ ) { /* Read some bytes. */ status = psa_generator_read( &generator, output_buffer, output_sizes[i] ); if( expected_capacity == 0 && output_sizes[i] == 0 ) { /* Reading 0 bytes when 0 bytes are available can go either way. */ TEST_ASSERT( status == PSA_SUCCESS || status == PSA_ERROR_INSUFFICIENT_CAPACITY ); continue; } else if( expected_capacity == 0 || output_sizes[i] > expected_capacity ) { /* Capacity exceeded. */ TEST_ASSERT( status == PSA_ERROR_INSUFFICIENT_CAPACITY ); expected_capacity = 0; continue; } /* Success. Check the read data. */ TEST_ASSERT( status == PSA_SUCCESS ); if( output_sizes[i] != 0 ) TEST_ASSERT( memcmp( output_buffer, expected_outputs[i], output_sizes[i] ) == 0 ); /* Check the generator status. */ expected_capacity -= output_sizes[i]; TEST_ASSERT( psa_get_generator_capacity( &generator, ¤t_capacity ) == PSA_SUCCESS ); TEST_ASSERT( expected_capacity == current_capacity ); } TEST_ASSERT( psa_generator_abort( &generator ) == PSA_SUCCESS ); exit: mbedtls_free( output_buffer ); psa_generator_abort( &generator ); psa_destroy_key( slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void derive_full( int alg_arg, data_t *key_data, data_t *salt, data_t *label, int requested_capacity_arg ) { psa_key_slot_t slot = 1; psa_algorithm_t alg = alg_arg; size_t requested_capacity = requested_capacity_arg; psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT; unsigned char output_buffer[16]; size_t expected_capacity = requested_capacity; size_t current_capacity; psa_key_policy_t policy; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DERIVE, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( slot, PSA_KEY_TYPE_DERIVE, key_data->x, key_data->len ) == PSA_SUCCESS ); /* Extraction phase. */ TEST_ASSERT( psa_key_derivation( &generator, slot, alg, salt->x, salt->len, label->x, label->len, requested_capacity ) == PSA_SUCCESS ); TEST_ASSERT( psa_get_generator_capacity( &generator, ¤t_capacity ) == PSA_SUCCESS ); TEST_ASSERT( current_capacity == expected_capacity ); /* Expansion phase. */ while( current_capacity > 0 ) { size_t read_size = sizeof( output_buffer ); if( read_size > current_capacity ) read_size = current_capacity; TEST_ASSERT( psa_generator_read( &generator, output_buffer, read_size ) == PSA_SUCCESS ); expected_capacity -= read_size; TEST_ASSERT( psa_get_generator_capacity( &generator, ¤t_capacity ) == PSA_SUCCESS ); TEST_ASSERT( current_capacity == expected_capacity ); } /* Check that the generator refuses to go over capacity. */ TEST_ASSERT( psa_generator_read( &generator, output_buffer, 1 ) == PSA_ERROR_INSUFFICIENT_CAPACITY ); TEST_ASSERT( psa_generator_abort( &generator ) == PSA_SUCCESS ); exit: psa_generator_abort( &generator ); psa_destroy_key( slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void derive_key_exercise( int alg_arg, data_t *key_data, data_t *salt, data_t *label, int derived_type_arg, int derived_bits_arg, int derived_usage_arg, int derived_alg_arg ) { psa_key_slot_t base_key = 1; psa_key_slot_t derived_key = 2; psa_algorithm_t alg = alg_arg; psa_key_type_t derived_type = derived_type_arg; size_t derived_bits = derived_bits_arg; psa_key_usage_t derived_usage = derived_usage_arg; psa_algorithm_t derived_alg = derived_alg_arg; size_t capacity = PSA_BITS_TO_BYTES( derived_bits ); psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT; psa_key_policy_t policy; psa_key_type_t got_type; size_t got_bits; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DERIVE, alg ); TEST_ASSERT( psa_set_key_policy( base_key, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( base_key, PSA_KEY_TYPE_DERIVE, key_data->x, key_data->len ) == PSA_SUCCESS ); /* Derive a key. */ TEST_ASSERT( psa_key_derivation( &generator, base_key, alg, salt->x, salt->len, label->x, label->len, capacity ) == PSA_SUCCESS ); psa_key_policy_set_usage( &policy, derived_usage, derived_alg ); TEST_ASSERT( psa_set_key_policy( derived_key, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_generator_import_key( derived_key, derived_type, derived_bits, &generator ) == PSA_SUCCESS ); /* Test the key information */ TEST_ASSERT( psa_get_key_information( derived_key, &got_type, &got_bits ) == PSA_SUCCESS ); TEST_ASSERT( got_type == derived_type ); TEST_ASSERT( got_bits == derived_bits ); /* Exercise the derived key. */ if( ! exercise_key( derived_key, derived_usage, derived_alg ) ) goto exit; exit: psa_generator_abort( &generator ); psa_destroy_key( base_key ); psa_destroy_key( derived_key ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void derive_key_export( int alg_arg, data_t *key_data, data_t *salt, data_t *label, int bytes1_arg, int bytes2_arg ) { psa_key_slot_t base_key = 1; psa_key_slot_t derived_key = 2; psa_algorithm_t alg = alg_arg; size_t bytes1 = bytes1_arg; size_t bytes2 = bytes2_arg; size_t capacity = bytes1 + bytes2; psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT; uint8_t *output_buffer = mbedtls_calloc( 1, capacity ); uint8_t *export_buffer = mbedtls_calloc( 1, capacity ); psa_key_policy_t policy; size_t length; TEST_ASSERT( output_buffer != NULL ); TEST_ASSERT( export_buffer != NULL ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DERIVE, alg ); TEST_ASSERT( psa_set_key_policy( base_key, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_import_key( base_key, PSA_KEY_TYPE_DERIVE, key_data->x, key_data->len ) == PSA_SUCCESS ); /* Derive some material and output it. */ TEST_ASSERT( psa_key_derivation( &generator, base_key, alg, salt->x, salt->len, label->x, label->len, capacity ) == PSA_SUCCESS ); TEST_ASSERT( psa_generator_read( &generator, output_buffer, capacity ) == PSA_SUCCESS ); TEST_ASSERT( psa_generator_abort( &generator ) == PSA_SUCCESS ); /* Derive the same output again, but this time store it in key objects. */ TEST_ASSERT( psa_key_derivation( &generator, base_key, alg, salt->x, salt->len, label->x, label->len, capacity ) == PSA_SUCCESS ); psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_EXPORT, 0 ); TEST_ASSERT( psa_set_key_policy( derived_key, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_generator_import_key( derived_key, PSA_KEY_TYPE_RAW_DATA, PSA_BYTES_TO_BITS( bytes1 ), &generator ) == PSA_SUCCESS ); TEST_ASSERT( psa_export_key( derived_key, export_buffer, bytes1, &length ) == PSA_SUCCESS ); TEST_ASSERT( length == bytes1 ); TEST_ASSERT( psa_destroy_key( derived_key ) == PSA_SUCCESS ); TEST_ASSERT( psa_set_key_policy( derived_key, &policy ) == PSA_SUCCESS ); TEST_ASSERT( psa_generator_import_key( derived_key, PSA_KEY_TYPE_RAW_DATA, PSA_BYTES_TO_BITS( bytes2 ), &generator ) == PSA_SUCCESS ); TEST_ASSERT( psa_export_key( derived_key, export_buffer + bytes1, bytes2, &length ) == PSA_SUCCESS ); TEST_ASSERT( length == bytes2 ); /* Compare the outputs from the two runs. */ TEST_ASSERT( memcmp( output_buffer, export_buffer, capacity ) == 0 ); exit: mbedtls_free( output_buffer ); mbedtls_free( export_buffer ); psa_generator_abort( &generator ); psa_destroy_key( base_key ); psa_destroy_key( derived_key ); mbedtls_psa_crypto_free( ); } /* END_CASE */ /* BEGIN_CASE */ void generate_random( int bytes_arg ) { size_t bytes = bytes_arg; const unsigned char trail[] = "don't overwrite me"; unsigned char *output = mbedtls_calloc( 1, bytes + sizeof( trail ) ); unsigned char *changed = mbedtls_calloc( 1, bytes ); size_t i; unsigned run; TEST_ASSERT( output != NULL ); TEST_ASSERT( bytes == 0 || changed != NULL ); memcpy( output + bytes, trail, sizeof( trail ) ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); /* Run several times, to ensure that every output byte will be * nonzero at least once with overwhelming probability * (2^(-8*number_of_runs)). */ for( run = 0; run < 10; run++ ) { memset( output, 0, bytes ); TEST_ASSERT( psa_generate_random( output, bytes ) == PSA_SUCCESS ); /* Check that no more than bytes have been overwritten */ TEST_ASSERT( memcmp( output + bytes, trail, sizeof( trail ) ) == 0 ); for( i = 0; i < bytes; i++ ) { if( output[i] != 0 ) ++changed[i]; } } /* Check that every byte was changed to nonzero at least once. This * validates that psa_generate_random is overwriting every byte of * the output buffer. */ for( i = 0; i < bytes; i++ ) { TEST_ASSERT( changed[i] != 0 ); } exit: mbedtls_psa_crypto_free( ); mbedtls_free( output ); mbedtls_free( changed ); } /* END_CASE */ /* BEGIN_CASE */ void generate_key( int type_arg, int bits_arg, int usage_arg, int alg_arg, int expected_status_arg ) { int slot = 1; psa_key_type_t type = type_arg; psa_key_usage_t usage = usage_arg; size_t bits = bits_arg; psa_algorithm_t alg = alg_arg; psa_status_t expected_status = expected_status_arg; psa_key_type_t got_type; size_t got_bits; unsigned char exported[616] = {0}; /* enough for a 1024-bit RSA key */ size_t exported_length; psa_status_t expected_export_status = usage & PSA_KEY_USAGE_EXPORT ? PSA_SUCCESS : PSA_ERROR_NOT_PERMITTED; psa_status_t expected_info_status = expected_status == PSA_SUCCESS ? PSA_SUCCESS : PSA_ERROR_EMPTY_SLOT; psa_key_policy_t policy; TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); psa_key_policy_init( &policy ); psa_key_policy_set_usage( &policy, usage, alg ); TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS ); /* Generate a key */ TEST_ASSERT( psa_generate_key( slot, type, bits, NULL, 0 ) == expected_status ); /* Test the key information */ TEST_ASSERT( psa_get_key_information( slot, &got_type, &got_bits ) == expected_info_status ); if( expected_info_status != PSA_SUCCESS ) goto exit; TEST_ASSERT( got_type == type ); TEST_ASSERT( got_bits == bits ); /* Export the key */ TEST_ASSERT( psa_export_key( slot, exported, sizeof( exported ), &exported_length ) == expected_export_status ); if( expected_export_status == PSA_SUCCESS ) { if( key_type_is_raw_bytes( type ) ) TEST_ASSERT( exported_length == ( bits + 7 ) / 8 ); #if defined(MBEDTLS_DES_C) if( type == PSA_KEY_TYPE_DES ) { /* Check the parity bits. */ unsigned i; for( i = 0; i < bits / 8; i++ ) { unsigned bit_count = 0; unsigned m; for( m = 1; m <= 0x100; m <<= 1 ) { if( exported[i] & m ) ++bit_count; } TEST_ASSERT( bit_count % 2 != 0 ); } } #endif #if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_PARSE_C) if( type == PSA_KEY_TYPE_RSA_KEYPAIR ) { /* Sanity check: does this look like the beginning of a PKCS#8 * RSA key pair? Assumes bits is a multiple of 8. */ size_t n_bytes = bits / 8 + 1; size_t n_encoded_bytes; unsigned char *n_end; TEST_ASSERT( exported_length >= 7 + ( n_bytes + 3 ) * 9 / 2 ); TEST_ASSERT( exported[0] == 0x30 ); TEST_ASSERT( exported[1] == 0x82 ); // assumes >=416-bit key TEST_ASSERT( exported[4] == 0x02 ); TEST_ASSERT( exported[5] == 0x01 ); TEST_ASSERT( exported[6] == 0x00 ); TEST_ASSERT( exported[7] == 0x02 ); n_encoded_bytes = exported[8]; n_end = exported + 9 + n_encoded_bytes; if( n_encoded_bytes & 0x80 ) { n_encoded_bytes = ( n_encoded_bytes & 0x7f ) << 7; n_encoded_bytes |= exported[9] & 0x7f; n_end += 1; } /* The encoding of n should start with a 0 byte since it should * have its high bit set. However Mbed TLS is not compliant and * generates an invalid, but widely tolerated, encoding of * positive INTEGERs with a bit size that is a multiple of 8 * with no leading 0 byte. Accept this here. */ TEST_ASSERT( n_bytes == n_encoded_bytes || n_bytes == n_encoded_bytes + 1 ); if( n_bytes == n_encoded_bytes ) TEST_ASSERT( exported[n_encoded_bytes <= 127 ? 9 : 10] == 0x00 ); /* Sanity check: e must be 3 */ TEST_ASSERT( n_end[0] == 0x02 ); TEST_ASSERT( n_end[1] == 0x03 ); TEST_ASSERT( n_end[2] == 0x01 ); TEST_ASSERT( n_end[3] == 0x00 ); TEST_ASSERT( n_end[4] == 0x01 ); TEST_ASSERT( n_end[5] == 0x02 ); } #endif /* MBEDTLS_RSA_C */ #if defined(MBEDTLS_ECP_C) if( PSA_KEY_TYPE_IS_ECC( type ) ) { /* Sanity check: does this look like the beginning of a PKCS#8 * elliptic curve key pair? */ TEST_ASSERT( exported_length >= bits * 3 / 8 + 10 ); TEST_ASSERT( exported[0] == 0x30 ); } #endif /* MBEDTLS_ECP_C */ } /* Do something with the key according to its type and permitted usage. */ if( ! exercise_key( slot, usage, alg ) ) goto exit; exit: psa_destroy_key( slot ); mbedtls_psa_crypto_free( ); } /* END_CASE */