/* BEGIN_HEADER */ #include "polarssl/pk.h" /* For error codes */ #include "polarssl/ecp.h" #include "polarssl/rsa.h" /* For detecting 64-bit compilation */ #include "polarssl/bignum.h" static int rnd_std_rand( void *rng_state, unsigned char *output, size_t len ); #define RSA_KEY_SIZE 512 #define RSA_KEY_LEN 64 static int pk_genkey( pk_context *pk ) { ((void) pk); #if defined(POLARSSL_RSA_C) && defined(POLARSSL_GENPRIME) if( pk_get_type( pk ) == POLARSSL_PK_RSA ) return rsa_gen_key( pk_rsa( *pk ), rnd_std_rand, NULL, RSA_KEY_SIZE, 3 ); #endif #if defined(POLARSSL_ECP_C) if( pk_get_type( pk ) == POLARSSL_PK_ECKEY || pk_get_type( pk ) == POLARSSL_PK_ECKEY_DH || pk_get_type( pk ) == POLARSSL_PK_ECDSA ) { int ret; if( ( ret = ecp_use_known_dp( &pk_ec( *pk )->grp, POLARSSL_ECP_DP_SECP192R1 ) ) != 0 ) return( ret ); return ecp_gen_keypair( &pk_ec( *pk )->grp, &pk_ec( *pk )->d, &pk_ec( *pk )->Q, rnd_std_rand, NULL ); } #endif return( -1 ); } #if defined(POLARSSL_RSA_C) int rsa_decrypt_func( void *ctx, int mode, size_t *olen, const unsigned char *input, unsigned char *output, size_t output_max_len ) { return( rsa_pkcs1_decrypt( (rsa_context *) ctx, NULL, NULL, mode, olen, input, output, output_max_len ) ); } int rsa_sign_func( void *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, unsigned char *sig ) { return( rsa_pkcs1_sign( (rsa_context *) ctx, f_rng, p_rng, mode, md_alg, hashlen, hash, sig ) ); } size_t rsa_key_len_func( void *ctx ) { return( ((const rsa_context *) ctx)->len ); } #endif /* POLARSSL_RSA_C */ /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:POLARSSL_PK_C * END_DEPENDENCIES */ /* BEGIN_CASE */ void pk_utils( int type, int size, int len, char *name ) { pk_context pk; pk_init( &pk ); TEST_ASSERT( pk_init_ctx( &pk, pk_info_from_type( type ) ) == 0 ); TEST_ASSERT( pk_genkey( &pk ) == 0 ); TEST_ASSERT( (int) pk_get_type( &pk ) == type ); TEST_ASSERT( pk_can_do( &pk, type ) ); TEST_ASSERT( pk_get_size( &pk ) == (unsigned) size ); TEST_ASSERT( pk_get_len( &pk ) == (unsigned) len ); TEST_ASSERT( strcmp( pk_get_name( &pk), name ) == 0 ); exit: pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:POLARSSL_PK_PARSE_C:POLARSSL_FS_IO */ void pk_check_pair( char *pub_file, char *prv_file, int ret ) { pk_context pub, prv, alt; pk_init( &pub ); pk_init( &prv ); pk_init( &alt ); TEST_ASSERT( pk_parse_public_keyfile( &pub, pub_file ) == 0 ); TEST_ASSERT( pk_parse_keyfile( &prv, prv_file, NULL ) == 0 ); TEST_ASSERT( pk_check_pair( &pub, &prv ) == ret ); #if defined(POLARSSL_RSA_C) if( pk_get_type( &prv ) == POLARSSL_PK_RSA ) { TEST_ASSERT( pk_init_ctx_rsa_alt( &alt, pk_rsa( prv ), rsa_decrypt_func, rsa_sign_func, rsa_key_len_func ) == 0 ); TEST_ASSERT( pk_check_pair( &pub, &alt ) == ret ); } #endif pk_free( &pub ); pk_free( &prv ); pk_free( &alt ); } /* END_CASE */ /* BEGIN_CASE depends_on:POLARSSL_RSA_C */ void pk_rsa_verify_test_vec( char *message_hex_string, int digest, int mod, int radix_N, char *input_N, int radix_E, char *input_E, char *result_hex_str, int result ) { unsigned char message_str[1000]; unsigned char hash_result[1000]; unsigned char result_str[1000]; rsa_context *rsa; pk_context pk; int msg_len; pk_init( &pk ); memset( message_str, 0x00, 1000 ); memset( hash_result, 0x00, 1000 ); memset( result_str, 0x00, 1000 ); TEST_ASSERT( pk_init_ctx( &pk, pk_info_from_type( POLARSSL_PK_RSA ) ) == 0 ); rsa = pk_rsa( pk ); rsa->len = mod / 8; TEST_ASSERT( mpi_read_string( &rsa->N, radix_N, input_N ) == 0 ); TEST_ASSERT( mpi_read_string( &rsa->E, radix_E, input_E ) == 0 ); msg_len = unhexify( message_str, message_hex_string ); unhexify( result_str, result_hex_str ); if( md_info_from_type( digest ) != NULL ) TEST_ASSERT( md( md_info_from_type( digest ), message_str, msg_len, hash_result ) == 0 ); TEST_ASSERT( pk_verify( &pk, digest, hash_result, 0, result_str, pk_get_len( &pk ) ) == result ); exit: pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:POLARSSL_RSA_C */ void pk_rsa_verify_ext_test_vec( char *message_hex_string, int digest, int mod, int radix_N, char *input_N, int radix_E, char *input_E, char *result_hex_str, int pk_type, int mgf1_hash_id, int salt_len, int result ) { unsigned char message_str[1000]; unsigned char hash_result[1000]; unsigned char result_str[1000]; rsa_context *rsa; pk_context pk; pk_rsassa_pss_options pss_opts; void *options; int msg_len; size_t hash_len; pk_init( &pk ); memset( message_str, 0x00, 1000 ); memset( hash_result, 0x00, 1000 ); memset( result_str, 0x00, 1000 ); TEST_ASSERT( pk_init_ctx( &pk, pk_info_from_type( POLARSSL_PK_RSA ) ) == 0 ); rsa = pk_rsa( pk ); rsa->len = mod / 8; TEST_ASSERT( mpi_read_string( &rsa->N, radix_N, input_N ) == 0 ); TEST_ASSERT( mpi_read_string( &rsa->E, radix_E, input_E ) == 0 ); msg_len = unhexify( message_str, message_hex_string ); unhexify( result_str, result_hex_str ); if( digest != POLARSSL_MD_NONE ) { TEST_ASSERT( md( md_info_from_type( digest ), message_str, msg_len, hash_result ) == 0 ); hash_len = 0; } else { memcpy( hash_result, message_str, msg_len ); hash_len = msg_len; } if( mgf1_hash_id < 0 ) { options = NULL; } else { options = &pss_opts; pss_opts.mgf1_hash_id = mgf1_hash_id; pss_opts.expected_salt_len = salt_len; } TEST_ASSERT( pk_verify_ext( pk_type, options, &pk, digest, hash_result, hash_len, result_str, pk_get_len( &pk ) ) == result ); exit: pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:POLARSSL_ECDSA_C */ void pk_ec_test_vec( int type, int id, char *key_str, char *hash_str, char * sig_str, int ret ) { pk_context pk; ecp_keypair *eckey; unsigned char hash[100], sig[500], key[500]; size_t hash_len, sig_len, key_len; pk_init( &pk ); memset( hash, 0, sizeof( hash ) ); hash_len = unhexify(hash, hash_str); memset( sig, 0, sizeof( sig ) ); sig_len = unhexify(sig, sig_str); memset( key, 0, sizeof( key ) ); key_len = unhexify(key, key_str); TEST_ASSERT( pk_init_ctx( &pk, pk_info_from_type( type ) ) == 0 ); TEST_ASSERT( pk_can_do( &pk, POLARSSL_PK_ECDSA ) ); eckey = pk_ec( pk ); TEST_ASSERT( ecp_use_known_dp( &eckey->grp, id ) == 0 ); TEST_ASSERT( ecp_point_read_binary( &eckey->grp, &eckey->Q, key, key_len ) == 0 ); TEST_ASSERT( pk_verify( &pk, POLARSSL_MD_NONE, hash, hash_len, sig, sig_len ) == ret ); exit: pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE */ void pk_sign_verify( int type, int sign_ret, int verify_ret ) { pk_context pk; unsigned char hash[50], sig[5000]; size_t sig_len; pk_init( &pk ); memset( hash, 0x2a, sizeof hash ); memset( sig, 0, sizeof sig ); TEST_ASSERT( pk_init_ctx( &pk, pk_info_from_type( type ) ) == 0 ); TEST_ASSERT( pk_genkey( &pk ) == 0 ); TEST_ASSERT( pk_sign( &pk, POLARSSL_MD_NONE, hash, sizeof hash, sig, &sig_len, rnd_std_rand, NULL ) == sign_ret ); TEST_ASSERT( pk_verify( &pk, POLARSSL_MD_NONE, hash, sizeof hash, sig, sig_len ) == verify_ret ); exit: pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:POLARSSL_RSA_C */ void pk_rsa_encrypt_test_vec( char *message_hex, int mod, int radix_N, char *input_N, int radix_E, char *input_E, char *result_hex, int ret ) { unsigned char message[1000]; unsigned char output[1000]; unsigned char result[1000]; size_t msg_len, olen, res_len; rnd_pseudo_info rnd_info; rsa_context *rsa; pk_context pk; memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); memset( message, 0, sizeof( message ) ); memset( output, 0, sizeof( output ) ); memset( result, 0, sizeof( result ) ); msg_len = unhexify( message, message_hex ); res_len = unhexify( result, result_hex ); pk_init( &pk ); TEST_ASSERT( pk_init_ctx( &pk, pk_info_from_type( POLARSSL_PK_RSA ) ) == 0 ); rsa = pk_rsa( pk ); rsa->len = mod / 8; TEST_ASSERT( mpi_read_string( &rsa->N, radix_N, input_N ) == 0 ); TEST_ASSERT( mpi_read_string( &rsa->E, radix_E, input_E ) == 0 ); TEST_ASSERT( pk_encrypt( &pk, message, msg_len, output, &olen, sizeof( output ), rnd_pseudo_rand, &rnd_info ) == ret ); TEST_ASSERT( olen == res_len ); TEST_ASSERT( memcmp( output, result, olen ) == 0 ); exit: pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:POLARSSL_RSA_C */ void pk_rsa_decrypt_test_vec( char *cipher_hex, int mod, int radix_P, char *input_P, int radix_Q, char *input_Q, int radix_N, char *input_N, int radix_E, char *input_E, char *clear_hex, int ret ) { unsigned char clear[1000]; unsigned char output[1000]; unsigned char cipher[1000]; size_t clear_len, olen, cipher_len; rnd_pseudo_info rnd_info; mpi P1, Q1, H, G; rsa_context *rsa; pk_context pk; pk_init( &pk ); mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G ); memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); memset( clear, 0, sizeof( clear ) ); memset( cipher, 0, sizeof( cipher ) ); clear_len = unhexify( clear, clear_hex ); cipher_len = unhexify( cipher, cipher_hex ); /* init pk-rsa context */ TEST_ASSERT( pk_init_ctx( &pk, pk_info_from_type( POLARSSL_PK_RSA ) ) == 0 ); rsa = pk_rsa( pk ); /* load public key */ rsa->len = mod / 8; TEST_ASSERT( mpi_read_string( &rsa->N, radix_N, input_N ) == 0 ); TEST_ASSERT( mpi_read_string( &rsa->E, radix_E, input_E ) == 0 ); /* load private key */ TEST_ASSERT( mpi_read_string( &rsa->P, radix_P, input_P ) == 0 ); TEST_ASSERT( mpi_read_string( &rsa->Q, radix_Q, input_Q ) == 0 ); TEST_ASSERT( mpi_sub_int( &P1, &rsa->P, 1 ) == 0 ); TEST_ASSERT( mpi_sub_int( &Q1, &rsa->Q, 1 ) == 0 ); TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); TEST_ASSERT( mpi_gcd( &G, &rsa->E, &H ) == 0 ); TEST_ASSERT( mpi_inv_mod( &rsa->D , &rsa->E, &H ) == 0 ); TEST_ASSERT( mpi_mod_mpi( &rsa->DP, &rsa->D, &P1 ) == 0 ); TEST_ASSERT( mpi_mod_mpi( &rsa->DQ, &rsa->D, &Q1 ) == 0 ); TEST_ASSERT( mpi_inv_mod( &rsa->QP, &rsa->Q, &rsa->P ) == 0 ); /* decryption test */ memset( output, 0, sizeof( output ) ); olen = 0; TEST_ASSERT( pk_decrypt( &pk, cipher, cipher_len, output, &olen, sizeof( output ), rnd_pseudo_rand, &rnd_info ) == ret ); if( ret == 0 ) { TEST_ASSERT( olen == clear_len ); TEST_ASSERT( memcmp( output, clear, olen ) == 0 ); } exit: mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G ); pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE */ void pk_ec_nocrypt( int type ) { pk_context pk; unsigned char output[100]; unsigned char input[100]; rnd_pseudo_info rnd_info; size_t olen = 0; int ret = POLARSSL_ERR_PK_TYPE_MISMATCH; pk_init( &pk ); memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); memset( output, 0, sizeof( output ) ); memset( input, 0, sizeof( input ) ); TEST_ASSERT( pk_init_ctx( &pk, pk_info_from_type( type ) ) == 0 ); TEST_ASSERT( pk_encrypt( &pk, input, sizeof( input ), output, &olen, sizeof( output ), rnd_pseudo_rand, &rnd_info ) == ret ); TEST_ASSERT( pk_decrypt( &pk, input, sizeof( input ), output, &olen, sizeof( output ), rnd_pseudo_rand, &rnd_info ) == ret ); exit: pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:POLARSSL_RSA_C:POLARSSL_HAVE_INT64 */ void pk_rsa_overflow( ) { pk_context pk; size_t hash_len = (size_t)-1; pk_init( &pk ); TEST_ASSERT( pk_init_ctx( &pk, pk_info_from_type( POLARSSL_PK_RSA ) ) == 0 ); #if defined(POLARSSL_PKCS1_V21) TEST_ASSERT( pk_verify_ext( POLARSSL_PK_RSASSA_PSS, NULL, &pk, POLARSSL_MD_NONE, NULL, hash_len, NULL, 0 ) == POLARSSL_ERR_PK_BAD_INPUT_DATA ); #endif /* POLARSSL_PKCS1_V21 */ TEST_ASSERT( pk_verify( &pk, POLARSSL_MD_NONE, NULL, hash_len, NULL, 0 ) == POLARSSL_ERR_PK_BAD_INPUT_DATA ); TEST_ASSERT( pk_sign( &pk, POLARSSL_MD_NONE, NULL, hash_len, NULL, 0, rnd_std_rand, NULL ) == POLARSSL_ERR_PK_BAD_INPUT_DATA ); exit: pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:POLARSSL_RSA_C */ void pk_rsa_alt( ) { /* * An rsa_alt context can only do private operations (decrypt, sign). * Test it against the public operations (encrypt, verify) of a * corresponding rsa context. */ rsa_context raw; pk_context rsa, alt; pk_debug_item dbg_items[10]; unsigned char hash[50], sig[1000]; unsigned char msg[50], ciph[1000], test[1000]; size_t sig_len, ciph_len, test_len; int ret = POLARSSL_ERR_PK_TYPE_MISMATCH; rsa_init( &raw, RSA_PKCS_V15, POLARSSL_MD_NONE ); pk_init( &rsa ); pk_init( &alt ); memset( hash, 0x2a, sizeof hash ); memset( sig, 0, sizeof sig ); memset( msg, 0x2a, sizeof msg ); memset( ciph, 0, sizeof ciph ); memset( test, 0, sizeof test ); /* Initiliaze PK RSA context with random key */ TEST_ASSERT( pk_init_ctx( &rsa, pk_info_from_type( POLARSSL_PK_RSA ) ) == 0 ); TEST_ASSERT( pk_genkey( &rsa ) == 0 ); /* Extract key to the raw rsa context */ TEST_ASSERT( rsa_copy( &raw, pk_rsa( rsa ) ) == 0 ); /* Initialize PK RSA_ALT context */ TEST_ASSERT( pk_init_ctx_rsa_alt( &alt, (void *) &raw, rsa_decrypt_func, rsa_sign_func, rsa_key_len_func ) == 0 ); /* Test administrative functions */ TEST_ASSERT( pk_can_do( &alt, POLARSSL_PK_RSA ) ); TEST_ASSERT( pk_get_size( &alt ) == RSA_KEY_SIZE ); TEST_ASSERT( pk_get_len( &alt ) == RSA_KEY_LEN ); TEST_ASSERT( pk_get_type( &alt ) == POLARSSL_PK_RSA_ALT ); TEST_ASSERT( strcmp( pk_get_name( &alt ), "RSA-alt" ) == 0 ); /* Test signature */ TEST_ASSERT( pk_sign( &alt, POLARSSL_MD_NONE, hash, sizeof hash, sig, &sig_len, rnd_std_rand, NULL ) == 0 ); #if defined(POLARSSL_HAVE_INT64) TEST_ASSERT( pk_sign( &alt, POLARSSL_MD_NONE, hash, (size_t)-1, NULL, NULL, rnd_std_rand, NULL ) == POLARSSL_ERR_PK_BAD_INPUT_DATA ); #endif /* POLARSSL_HAVE_INT64 */ TEST_ASSERT( sig_len == RSA_KEY_LEN ); TEST_ASSERT( pk_verify( &rsa, POLARSSL_MD_NONE, hash, sizeof hash, sig, sig_len ) == 0 ); /* Test decrypt */ TEST_ASSERT( pk_encrypt( &rsa, msg, sizeof msg, ciph, &ciph_len, sizeof ciph, rnd_std_rand, NULL ) == 0 ); TEST_ASSERT( pk_decrypt( &alt, ciph, ciph_len, test, &test_len, sizeof test, rnd_std_rand, NULL ) == 0 ); TEST_ASSERT( test_len == sizeof msg ); TEST_ASSERT( memcmp( test, msg, test_len ) == 0 ); /* Test forbidden operations */ TEST_ASSERT( pk_encrypt( &alt, msg, sizeof msg, ciph, &ciph_len, sizeof ciph, rnd_std_rand, NULL ) == ret ); TEST_ASSERT( pk_verify( &alt, POLARSSL_MD_NONE, hash, sizeof hash, sig, sig_len ) == ret ); TEST_ASSERT( pk_debug( &alt, dbg_items ) == ret ); exit: rsa_free( &raw ); pk_free( &rsa ); pk_free( &alt ); } /* END_CASE */