/* ecc.h - TinyCrypt interface to common ECC functions */ /* * Copyright (c) 2019, Arm Limited (or its affiliates), All Rights Reserved. * SPDX-License-Identifier: BSD-3-Clause */ /* Copyright (c) 2014, Kenneth MacKay * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (C) 2017 by Intel Corporation, All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of Intel Corporation nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * @file * @brief -- Interface to common ECC functions. * * Overview: This software is an implementation of common functions * necessary to elliptic curve cryptography. This implementation uses * curve NIST p-256. * * Security: The curve NIST p-256 provides approximately 128 bits of security. * */ #if defined(MBEDTLS_USE_TINYCRYPT) #ifndef __TC_UECC_H__ #define __TC_UECC_H__ #include #ifdef __cplusplus extern "C" { #endif /* Return values for functions, chosen with large Hamming distances between * them (especially to SUCESS) to mitigate the impact of fault injection * attacks flipping a low number of bits. */ #define UECC_SUCCESS 0 #define UECC_FAILURE 0x75555555 #define UECC_ATTACK_DETECTED 0x7aaaaaaa /* Word size (4 bytes considering 32-bits architectures) */ #define uECC_WORD_SIZE 4 /* setting max number of calls to prng: */ #ifndef uECC_RNG_MAX_TRIES #define uECC_RNG_MAX_TRIES 64 #endif /* defining data types to store word and bit counts: */ typedef int8_t wordcount_t; typedef int16_t bitcount_t; /* defining data type for comparison result: */ typedef int8_t cmpresult_t; /* defining data type to store ECC coordinate/point in 32bits words: */ typedef unsigned int uECC_word_t; /* defining data type to store an ECC coordinate/point in 64bits words: */ typedef uint64_t uECC_dword_t; /* defining masks useful for ecc computations: */ #define HIGH_BIT_SET 0x80000000 #define uECC_WORD_BITS 32 #define uECC_WORD_BITS_SHIFT 5 #define uECC_WORD_BITS_MASK 0x01F /* Number of words of 32 bits to represent an element of the the curve p-256: */ #define NUM_ECC_WORDS 8 /* Number of bytes to represent an element of the the curve p-256: */ #define NUM_ECC_BYTES (uECC_WORD_SIZE*NUM_ECC_WORDS) #define NUM_ECC_BITS 256 /* structure that represents an elliptic curve (e.g. p256):*/ struct uECC_Curve_t; typedef const struct uECC_Curve_t * uECC_Curve; struct uECC_Curve_t { uECC_word_t b[NUM_ECC_WORDS]; }; /* * @brief computes doubling of point ion jacobian coordinates, in place. * @param X1 IN/OUT -- x coordinate * @param Y1 IN/OUT -- y coordinate * @param Z1 IN/OUT -- z coordinate * @param curve IN -- elliptic curve */ void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * Z1, uECC_Curve curve); /* * @brief Computes result = product % curve_p * from http://www.nsa.gov/ia/_files/nist-routines.pdf * @param result OUT -- product % curve_p * @param product IN -- value to be reduced mod curve_p */ void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int *product); /* Bytes to words ordering: */ #define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##d##c##b##a, 0x##h##g##f##e #define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a #define BITS_TO_WORDS(num_bits) \ ((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8)) #define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8) extern const uECC_word_t curve_p[NUM_ECC_WORDS]; extern const uECC_word_t curve_n[NUM_ECC_WORDS]; extern const uECC_word_t curve_G[2 * NUM_ECC_WORDS]; /* definition of curve NIST p-256: */ static const struct uECC_Curve_t curve_secp256r1 = { { BYTES_TO_WORDS_8(4B, 60, D2, 27, 3E, 3C, CE, 3B), BYTES_TO_WORDS_8(F6, B0, 53, CC, B0, 06, 1D, 65), BYTES_TO_WORDS_8(BC, 86, 98, 76, 55, BD, EB, B3), BYTES_TO_WORDS_8(E7, 93, 3A, AA, D8, 35, C6, 5A) }, }; uECC_Curve uECC_secp256r1(void); /* * @brief Generates a random integer in the range 0 < random < top. * Both random and top have num_words words. * @param random OUT -- random integer in the range 0 < random < top * @param top IN -- upper limit * @param num_words IN -- number of words * @return a random integer in the range 0 < random < top */ int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top, wordcount_t num_words); /* uECC_RNG_Function type * The RNG function should fill 'size' random bytes into 'dest'. It should * return 1 if 'dest' was filled with random data, or 0 if the random data could * not be generated. The filled-in values should be either truly random, or from * a cryptographically-secure PRNG. * * A correctly functioning RNG function must be set (using uECC_set_rng()) * before calling uECC_make_key() or uECC_sign(). * * Setting a correctly functioning RNG function improves the resistance to * side-channel attacks for uECC_shared_secret(). * * A correct RNG function is set by default. If you are building on another * POSIX-compliant system that supports /dev/random or /dev/urandom, you can * define uECC_POSIX to use the predefined RNG. */ typedef int(*uECC_RNG_Function)(uint8_t *dest, unsigned int size); /* * @brief Set the function that will be used to generate random bytes. The RNG * function should return 1 if the random data was generated, or 0 if the random * data could not be generated. * * @note On platforms where there is no predefined RNG function, this must be * called before uECC_make_key() or uECC_sign() are used. * * @param rng_function IN -- function that will be used to generate random bytes */ void uECC_set_rng(uECC_RNG_Function rng_function); /* * @brief provides current uECC_RNG_Function. * @return Returns the function that will be used to generate random bytes. */ uECC_RNG_Function uECC_get_rng(void); /* * @brief computes the size of a private key for the curve in bytes. * @param curve IN -- elliptic curve * @return size of a private key for the curve in bytes. */ int uECC_curve_private_key_size(uECC_Curve curve); /* * @brief computes the size of a public key for the curve in bytes. * @param curve IN -- elliptic curve * @return the size of a public key for the curve in bytes. */ int uECC_curve_public_key_size(uECC_Curve curve); /* * @brief Compute the corresponding public key for a private key. * @param private_key IN -- The private key to compute the public key for * @param public_key OUT -- Will be filled in with the corresponding public key * @param curve * @return Returns 1 if key was computed successfully, 0 if an error occurred. */ int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key, uECC_Curve curve); /* * @brief Compute public-key. * @return corresponding public-key. * @param result OUT -- public-key * @param private_key IN -- private-key * @param curve IN -- elliptic curve */ uECC_word_t EccPoint_compute_public_key(uECC_word_t *result, uECC_word_t *private_key, uECC_Curve curve); /* * @brief Point multiplication algorithm using Montgomery's ladder with co-Z * coordinates. See http://eprint.iacr.org/2011/338.pdf. * Uses scalar regularization and coordinate randomization (if a global RNG * function is set) in order to protect against some side channel attacks. * @note Result may overlap point. * @param result OUT -- returns scalar*point * @param point IN -- elliptic curve point * @param scalar IN -- scalar * @param curve IN -- elliptic curve */ int EccPoint_mult_safer(uECC_word_t * result, const uECC_word_t * point, const uECC_word_t * scalar, uECC_Curve curve); /* * @brief Constant-time comparison to zero - secure way to compare long integers * @param vli IN -- very long integer * @param num_words IN -- number of words in the vli * @return 1 if vli == 0, 0 otherwise. */ uECC_word_t uECC_vli_isZero(const uECC_word_t *vli); /* * @brief Check if 'point' is the point at infinity * @param point IN -- elliptic curve point * @param curve IN -- elliptic curve * @return if 'point' is the point at infinity, 0 otherwise. */ uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve); /* * @brief computes the sign of left - right, in constant time. * @param left IN -- left term to be compared * @param right IN -- right term to be compared * @param num_words IN -- number of words * @return the sign of left - right */ cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right); /* * @brief computes sign of left - right, not in constant time. * @note should not be used if inputs are part of a secret * @param left IN -- left term to be compared * @param right IN -- right term to be compared * @param num_words IN -- number of words * @return the sign of left - right */ cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, const uECC_word_t *right); /* * @brief Computes result = (left - right) % mod. * @note Assumes that (left < mod) and (right < mod), and that result does not * overlap mod. * @param result OUT -- (left - right) % mod * @param left IN -- leftright term in modular subtraction * @param right IN -- right term in modular subtraction * @param mod IN -- mod * @param num_words IN -- number of words */ void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, const uECC_word_t *mod); /* * @brief Computes P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) or * P => P', Q => P + Q * @note assumes Input P = (x1, y1, Z), Q = (x2, y2, Z) * @param X1 IN -- x coordinate of P * @param Y1 IN -- y coordinate of P * @param X2 IN -- x coordinate of Q * @param Y2 IN -- y coordinate of Q * @param curve IN -- elliptic curve */ void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * X2, uECC_word_t * Y2, uECC_Curve curve); /* * @brief Computes (x1 * z^2, y1 * z^3) * @param X1 IN -- previous x1 coordinate * @param Y1 IN -- previous y1 coordinate * @param Z IN -- z value * @param curve IN -- elliptic curve */ void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z); /* * @brief Check if bit is set. * @return Returns nonzero if bit 'bit' of vli is set. * @warning It is assumed that the value provided in 'bit' is within the * boundaries of the word-array 'vli'. * @note The bit ordering layout assumed for vli is: {31, 30, ..., 0}, * {63, 62, ..., 32}, {95, 94, ..., 64}, {127, 126,..., 96} for a vli consisting * of 4 uECC_word_t elements. */ uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit); /* * @brief Computes result = product % mod, where product is 2N words long. * @param result OUT -- product % mod * @param mod IN -- module * @param num_words IN -- number of words * @warning Currently only designed to work for curve_p or curve_n. */ void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product, const uECC_word_t *mod); /* * @brief Computes modular product (using curve->mmod_fast) * @param result OUT -- (left * right) mod % curve_p * @param left IN -- left term in product * @param right IN -- right term in product * @param curve IN -- elliptic curve */ void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right); /* * @brief Computes result = left - right. * @note Can modify in place. * @param result OUT -- left - right * @param left IN -- left term in subtraction * @param right IN -- right term in subtraction * @param num_words IN -- number of words * @return borrow */ uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right); /* * @brief Constant-time comparison function(secure way to compare long ints) * @param left IN -- left term in comparison * @param right IN -- right term in comparison * @param num_words IN -- number of words * @return Returns 0 if left == right, non-zero otherwise. */ uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right); /* * @brief Computes (left * right) % mod * @param result OUT -- (left * right) % mod * @param left IN -- left term in product * @param right IN -- right term in product * @param mod IN -- mod * @param num_words IN -- number of words */ void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, const uECC_word_t *mod); /* * @brief Computes (1 / input) % mod * @note All VLIs are the same size. * @note See "Euclid's GCD to Montgomery Multiplication to the Great Divide" * @param result OUT -- (1 / input) % mod * @param input IN -- value to be modular inverted * @param mod IN -- mod * @param num_words -- number of words */ void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input, const uECC_word_t *mod); /* * @brief Sets dest = src. * @param dest OUT -- destination buffer * @param src IN -- origin buffer * @param num_words IN -- number of words */ void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src); /* * @brief Computes (left + right) % mod. * @note Assumes that (left < mod) and right < mod), and that result does not * overlap mod. * @param result OUT -- (left + right) % mod. * @param left IN -- left term in addition * @param right IN -- right term in addition * @param mod IN -- mod * @param num_words IN -- number of words */ void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, const uECC_word_t *mod); /* * @brief Counts the number of bits required to represent vli. * @param vli IN -- very long integer * @param max_words IN -- number of words * @return number of bits in given vli */ bitcount_t uECC_vli_numBits(const uECC_word_t *vli); /* * @brief Erases (set to 0) vli * @param vli IN -- very long integer * @param num_words IN -- number of words */ void uECC_vli_clear(uECC_word_t *vli); /* * @brief check if it is a valid point in the curve * @param point IN -- point to be checked * @param curve IN -- elliptic curve * @return 0 if point is valid * @exception returns -1 if it is a point at infinity * @exception returns -2 if x or y is smaller than p, * @exception returns -3 if y^2 != x^3 + ax + b. */ int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve); /* * @brief Check if a public key is valid. * @param public_key IN -- The public key to be checked. * @return returns 0 if the public key is valid * @exception returns -1 if it is a point at infinity * @exception returns -2 if x or y is smaller than p, * @exception returns -3 if y^2 != x^3 + ax + b. * @exception returns -4 if public key is the group generator. * * @note Note that you are not required to check for a valid public key before * using any other uECC functions. However, you may wish to avoid spending CPU * time computing a shared secret or verifying a signature using an invalid * public key. */ int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve); /* * @brief Converts an integer in uECC native format to big-endian bytes. * @param bytes OUT -- bytes representation * @param num_bytes IN -- number of bytes * @param native IN -- uECC native representation */ void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes, const unsigned int *native); /* * @brief Converts big-endian bytes to an integer in uECC native format. * @param native OUT -- uECC native representation * @param bytes IN -- bytes representation * @param num_bytes IN -- number of bytes */ void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes, int num_bytes); #ifdef __cplusplus } #endif #endif /* __TC_UECC_H__ */ #endif /* MBEDTLS_USE_TINYCRYPT */