/* * The RSA public-key cryptosystem * * Copyright (C) 2006-2014, ARM Limited, All Rights Reserved * * This file is part of mbed TLS (https://tls.mbed.org) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* * RSA was designed by Ron Rivest, Adi Shamir and Len Adleman. * * http://theory.lcs.mit.edu/~rivest/rsapaper.pdf * http://www.cacr.math.uwaterloo.ca/hac/about/chap8.pdf */ #if !defined(POLARSSL_CONFIG_FILE) #include "mbedtls/config.h" #else #include POLARSSL_CONFIG_FILE #endif #if defined(POLARSSL_RSA_C) #include "mbedtls/rsa.h" #include "mbedtls/oid.h" #include #if defined(POLARSSL_PKCS1_V21) #include "mbedtls/md.h" #endif #if defined(POLARSSL_PKCS1_V15) && !defined(__OpenBSD__) #include #endif #if defined(POLARSSL_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define polarssl_printf printf #endif /* * Initialize an RSA context */ void rsa_init( rsa_context *ctx, int padding, int hash_id ) { memset( ctx, 0, sizeof( rsa_context ) ); rsa_set_padding( ctx, padding, hash_id ); #if defined(POLARSSL_THREADING_C) polarssl_mutex_init( &ctx->mutex ); #endif } /* * Set padding for an existing RSA context */ void rsa_set_padding( rsa_context *ctx, int padding, int hash_id ) { ctx->padding = padding; ctx->hash_id = hash_id; } #if defined(POLARSSL_GENPRIME) /* * Generate an RSA keypair */ int rsa_gen_key( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, unsigned int nbits, int exponent ) { int ret; mpi P1, Q1, H, G; if( f_rng == NULL || nbits < 128 || exponent < 3 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G ); /* * find primes P and Q with Q < P so that: * GCD( E, (P-1)*(Q-1) ) == 1 */ MPI_CHK( mpi_lset( &ctx->E, exponent ) ); do { MPI_CHK( mpi_gen_prime( &ctx->P, ( nbits + 1 ) >> 1, 0, f_rng, p_rng ) ); MPI_CHK( mpi_gen_prime( &ctx->Q, ( nbits + 1 ) >> 1, 0, f_rng, p_rng ) ); if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 ) mpi_swap( &ctx->P, &ctx->Q ); if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) == 0 ) continue; MPI_CHK( mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) ); if( mpi_msb( &ctx->N ) != nbits ) continue; MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) ); MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) ); MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) ); MPI_CHK( mpi_gcd( &G, &ctx->E, &H ) ); } while( mpi_cmp_int( &G, 1 ) != 0 ); /* * D = E^-1 mod ((P-1)*(Q-1)) * DP = D mod (P - 1) * DQ = D mod (Q - 1) * QP = Q^-1 mod P */ MPI_CHK( mpi_inv_mod( &ctx->D , &ctx->E, &H ) ); MPI_CHK( mpi_mod_mpi( &ctx->DP, &ctx->D, &P1 ) ); MPI_CHK( mpi_mod_mpi( &ctx->DQ, &ctx->D, &Q1 ) ); MPI_CHK( mpi_inv_mod( &ctx->QP, &ctx->Q, &ctx->P ) ); ctx->len = ( mpi_msb( &ctx->N ) + 7 ) >> 3; cleanup: mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G ); if( ret != 0 ) { rsa_free( ctx ); return( POLARSSL_ERR_RSA_KEY_GEN_FAILED + ret ); } return( 0 ); } #endif /* POLARSSL_GENPRIME */ /* * Check a public RSA key */ int rsa_check_pubkey( const rsa_context *ctx ) { if( !ctx->N.p || !ctx->E.p ) return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED ); if( ( ctx->N.p[0] & 1 ) == 0 || ( ctx->E.p[0] & 1 ) == 0 ) return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED ); if( mpi_msb( &ctx->N ) < 128 || mpi_msb( &ctx->N ) > POLARSSL_MPI_MAX_BITS ) return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED ); if( mpi_msb( &ctx->E ) < 2 || mpi_cmp_mpi( &ctx->E, &ctx->N ) >= 0 ) return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED ); return( 0 ); } /* * Check a private RSA key */ int rsa_check_privkey( const rsa_context *ctx ) { int ret; mpi PQ, DE, P1, Q1, H, I, G, G2, L1, L2, DP, DQ, QP; if( ( ret = rsa_check_pubkey( ctx ) ) != 0 ) return( ret ); if( !ctx->P.p || !ctx->Q.p || !ctx->D.p ) return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED ); mpi_init( &PQ ); mpi_init( &DE ); mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &I ); mpi_init( &G ); mpi_init( &G2 ); mpi_init( &L1 ); mpi_init( &L2 ); mpi_init( &DP ); mpi_init( &DQ ); mpi_init( &QP ); MPI_CHK( mpi_mul_mpi( &PQ, &ctx->P, &ctx->Q ) ); MPI_CHK( mpi_mul_mpi( &DE, &ctx->D, &ctx->E ) ); MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) ); MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) ); MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) ); MPI_CHK( mpi_gcd( &G, &ctx->E, &H ) ); MPI_CHK( mpi_gcd( &G2, &P1, &Q1 ) ); MPI_CHK( mpi_div_mpi( &L1, &L2, &H, &G2 ) ); MPI_CHK( mpi_mod_mpi( &I, &DE, &L1 ) ); MPI_CHK( mpi_mod_mpi( &DP, &ctx->D, &P1 ) ); MPI_CHK( mpi_mod_mpi( &DQ, &ctx->D, &Q1 ) ); MPI_CHK( mpi_inv_mod( &QP, &ctx->Q, &ctx->P ) ); /* * Check for a valid PKCS1v2 private key */ if( mpi_cmp_mpi( &PQ, &ctx->N ) != 0 || mpi_cmp_mpi( &DP, &ctx->DP ) != 0 || mpi_cmp_mpi( &DQ, &ctx->DQ ) != 0 || mpi_cmp_mpi( &QP, &ctx->QP ) != 0 || mpi_cmp_int( &L2, 0 ) != 0 || mpi_cmp_int( &I, 1 ) != 0 || mpi_cmp_int( &G, 1 ) != 0 ) { ret = POLARSSL_ERR_RSA_KEY_CHECK_FAILED; } cleanup: mpi_free( &PQ ); mpi_free( &DE ); mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &I ); mpi_free( &G ); mpi_free( &G2 ); mpi_free( &L1 ); mpi_free( &L2 ); mpi_free( &DP ); mpi_free( &DQ ); mpi_free( &QP ); if( ret == POLARSSL_ERR_RSA_KEY_CHECK_FAILED ) return( ret ); if( ret != 0 ) return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED + ret ); return( 0 ); } /* * Check if contexts holding a public and private key match */ int rsa_check_pub_priv( const rsa_context *pub, const rsa_context *prv ) { if( rsa_check_pubkey( pub ) != 0 || rsa_check_privkey( prv ) != 0 ) { return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED ); } if( mpi_cmp_mpi( &pub->N, &prv->N ) != 0 || mpi_cmp_mpi( &pub->E, &prv->E ) != 0 ) { return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED ); } return( 0 ); } /* * Do an RSA public key operation */ int rsa_public( rsa_context *ctx, const unsigned char *input, unsigned char *output ) { int ret; size_t olen; mpi T; mpi_init( &T ); MPI_CHK( mpi_read_binary( &T, input, ctx->len ) ); if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 ) { mpi_free( &T ); return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); } olen = ctx->len; MPI_CHK( mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) ); MPI_CHK( mpi_write_binary( &T, output, olen ) ); cleanup: mpi_free( &T ); if( ret != 0 ) return( POLARSSL_ERR_RSA_PUBLIC_FAILED + ret ); return( 0 ); } /* * Generate or update blinding values, see section 10 of: * KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA, * DSS, and other systems. In : Advances in Cryptology—CRYPTO’96. Springer * Berlin Heidelberg, 1996. p. 104-113. */ static int rsa_prepare_blinding( rsa_context *ctx, mpi *Vi, mpi *Vf, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { int ret, count = 0; #if defined(POLARSSL_THREADING_C) polarssl_mutex_lock( &ctx->mutex ); #endif if( ctx->Vf.p != NULL ) { /* We already have blinding values, just update them by squaring */ MPI_CHK( mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) ); MPI_CHK( mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) ); MPI_CHK( mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) ); MPI_CHK( mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) ); goto done; } /* Unblinding value: Vf = random number, invertible mod N */ do { if( count++ > 10 ) return( POLARSSL_ERR_RSA_RNG_FAILED ); MPI_CHK( mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) ); MPI_CHK( mpi_gcd( &ctx->Vi, &ctx->Vf, &ctx->N ) ); } while( mpi_cmp_int( &ctx->Vi, 1 ) != 0 ); /* Blinding value: Vi = Vf^(-e) mod N */ MPI_CHK( mpi_inv_mod( &ctx->Vi, &ctx->Vf, &ctx->N ) ); MPI_CHK( mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) ); done: if( Vi != &ctx->Vi ) { MPI_CHK( mpi_copy( Vi, &ctx->Vi ) ); MPI_CHK( mpi_copy( Vf, &ctx->Vf ) ); } cleanup: #if defined(POLARSSL_THREADING_C) polarssl_mutex_unlock( &ctx->mutex ); #endif return( ret ); } /* * Do an RSA private key operation */ int rsa_private( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, const unsigned char *input, unsigned char *output ) { int ret; size_t olen; mpi T, T1, T2; mpi *Vi, *Vf; /* * When using the Chinese Remainder Theorem, we use blinding values. * Without threading, we just read them directly from the context, * otherwise we make a local copy in order to reduce locking contention. */ #if defined(POLARSSL_THREADING_C) mpi Vi_copy, Vf_copy; mpi_init( &Vi_copy ); mpi_init( &Vf_copy ); Vi = &Vi_copy; Vf = &Vf_copy; #else Vi = &ctx->Vi; Vf = &ctx->Vf; #endif mpi_init( &T ); mpi_init( &T1 ); mpi_init( &T2 ); MPI_CHK( mpi_read_binary( &T, input, ctx->len ) ); if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 ) { mpi_free( &T ); return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); } if( f_rng != NULL ) { /* * Blinding * T = T * Vi mod N */ MPI_CHK( rsa_prepare_blinding( ctx, Vi, Vf, f_rng, p_rng ) ); MPI_CHK( mpi_mul_mpi( &T, &T, Vi ) ); MPI_CHK( mpi_mod_mpi( &T, &T, &ctx->N ) ); } #if defined(POLARSSL_RSA_NO_CRT) MPI_CHK( mpi_exp_mod( &T, &T, &ctx->D, &ctx->N, &ctx->RN ) ); #else /* * faster decryption using the CRT * * T1 = input ^ dP mod P * T2 = input ^ dQ mod Q */ MPI_CHK( mpi_exp_mod( &T1, &T, &ctx->DP, &ctx->P, &ctx->RP ) ); MPI_CHK( mpi_exp_mod( &T2, &T, &ctx->DQ, &ctx->Q, &ctx->RQ ) ); /* * T = (T1 - T2) * (Q^-1 mod P) mod P */ MPI_CHK( mpi_sub_mpi( &T, &T1, &T2 ) ); MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->QP ) ); MPI_CHK( mpi_mod_mpi( &T, &T1, &ctx->P ) ); /* * T = T2 + T * Q */ MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->Q ) ); MPI_CHK( mpi_add_mpi( &T, &T2, &T1 ) ); #endif /* POLARSSL_RSA_NO_CRT */ if( f_rng != NULL ) { /* * Unblind * T = T * Vf mod N */ MPI_CHK( mpi_mul_mpi( &T, &T, Vf ) ); MPI_CHK( mpi_mod_mpi( &T, &T, &ctx->N ) ); } olen = ctx->len; MPI_CHK( mpi_write_binary( &T, output, olen ) ); cleanup: mpi_free( &T ); mpi_free( &T1 ); mpi_free( &T2 ); #if defined(POLARSSL_THREADING_C) mpi_free( &Vi_copy ); mpi_free( &Vf_copy ); #endif if( ret != 0 ) return( POLARSSL_ERR_RSA_PRIVATE_FAILED + ret ); return( 0 ); } #if defined(POLARSSL_PKCS1_V21) /** * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer. * * \param dst buffer to mask * \param dlen length of destination buffer * \param src source of the mask generation * \param slen length of the source buffer * \param md_ctx message digest context to use */ static void mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src, size_t slen, md_context_t *md_ctx ) { unsigned char mask[POLARSSL_MD_MAX_SIZE]; unsigned char counter[4]; unsigned char *p; unsigned int hlen; size_t i, use_len; memset( mask, 0, POLARSSL_MD_MAX_SIZE ); memset( counter, 0, 4 ); hlen = md_get_size( md_ctx->md_info ); // Generate and apply dbMask // p = dst; while( dlen > 0 ) { use_len = hlen; if( dlen < hlen ) use_len = dlen; md_starts( md_ctx ); md_update( md_ctx, src, slen ); md_update( md_ctx, counter, 4 ); md_finish( md_ctx, mask ); for( i = 0; i < use_len; ++i ) *p++ ^= mask[i]; counter[3]++; dlen -= use_len; } } #endif /* POLARSSL_PKCS1_V21 */ #if defined(POLARSSL_PKCS1_V21) /* * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function */ int rsa_rsaes_oaep_encrypt( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, const unsigned char *label, size_t label_len, size_t ilen, const unsigned char *input, unsigned char *output ) { size_t olen; int ret; unsigned char *p = output; unsigned int hlen; const md_info_t *md_info; md_context_t md_ctx; if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V21 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); if( f_rng == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); md_info = md_info_from_type( (md_type_t) ctx->hash_id ); if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); olen = ctx->len; hlen = md_get_size( md_info ); if( olen < ilen + 2 * hlen + 2 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); memset( output, 0, olen ); *p++ = 0; // Generate a random octet string seed // if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 ) return( POLARSSL_ERR_RSA_RNG_FAILED + ret ); p += hlen; // Construct DB // md( md_info, label, label_len, p ); p += hlen; p += olen - 2 * hlen - 2 - ilen; *p++ = 1; memcpy( p, input, ilen ); md_init( &md_ctx ); md_init_ctx( &md_ctx, md_info, 0 ); // maskedDB: Apply dbMask to DB // mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen, &md_ctx ); // maskedSeed: Apply seedMask to seed // mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1, &md_ctx ); md_free( &md_ctx ); return( ( mode == RSA_PUBLIC ) ? rsa_public( ctx, output, output ) : rsa_private( ctx, f_rng, p_rng, output, output ) ); } #endif /* POLARSSL_PKCS1_V21 */ #if defined(POLARSSL_PKCS1_V15) /* * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function */ int rsa_rsaes_pkcs1_v15_encrypt( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, size_t ilen, const unsigned char *input, unsigned char *output ) { size_t nb_pad, olen; int ret; unsigned char *p = output; if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V15 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); if( f_rng == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); olen = ctx->len; if( olen < ilen + 11 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); nb_pad = olen - 3 - ilen; *p++ = 0; if( mode == RSA_PUBLIC ) { *p++ = RSA_CRYPT; while( nb_pad-- > 0 ) { int rng_dl = 100; do { ret = f_rng( p_rng, p, 1 ); } while( *p == 0 && --rng_dl && ret == 0 ); // Check if RNG failed to generate data // if( rng_dl == 0 || ret != 0 ) return( POLARSSL_ERR_RSA_RNG_FAILED + ret ); p++; } } else { *p++ = RSA_SIGN; while( nb_pad-- > 0 ) *p++ = 0xFF; } *p++ = 0; memcpy( p, input, ilen ); return( ( mode == RSA_PUBLIC ) ? rsa_public( ctx, output, output ) : rsa_private( ctx, f_rng, p_rng, output, output ) ); } #endif /* POLARSSL_PKCS1_V15 */ /* * Add the message padding, then do an RSA operation */ int rsa_pkcs1_encrypt( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, size_t ilen, const unsigned char *input, unsigned char *output ) { switch( ctx->padding ) { #if defined(POLARSSL_PKCS1_V15) case RSA_PKCS_V15: return rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, mode, ilen, input, output ); #endif #if defined(POLARSSL_PKCS1_V21) case RSA_PKCS_V21: return rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, mode, NULL, 0, ilen, input, output ); #endif default: return( POLARSSL_ERR_RSA_INVALID_PADDING ); } } #if defined(POLARSSL_PKCS1_V21) /* * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function */ int rsa_rsaes_oaep_decrypt( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, const unsigned char *label, size_t label_len, size_t *olen, const unsigned char *input, unsigned char *output, size_t output_max_len ) { int ret; size_t ilen, i, pad_len; unsigned char *p, bad, pad_done; unsigned char buf[POLARSSL_MPI_MAX_SIZE]; unsigned char lhash[POLARSSL_MD_MAX_SIZE]; unsigned int hlen; const md_info_t *md_info; md_context_t md_ctx; /* * Parameters sanity checks */ if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V21 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); ilen = ctx->len; if( ilen < 16 || ilen > sizeof( buf ) ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); md_info = md_info_from_type( (md_type_t) ctx->hash_id ); if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); /* * RSA operation */ ret = ( mode == RSA_PUBLIC ) ? rsa_public( ctx, input, buf ) : rsa_private( ctx, f_rng, p_rng, input, buf ); if( ret != 0 ) return( ret ); /* * Unmask data and generate lHash */ hlen = md_get_size( md_info ); md_init( &md_ctx ); md_init_ctx( &md_ctx, md_info, 0 ); /* Generate lHash */ md( md_info, label, label_len, lhash ); /* seed: Apply seedMask to maskedSeed */ mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1, &md_ctx ); /* DB: Apply dbMask to maskedDB */ mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen, &md_ctx ); md_free( &md_ctx ); /* * Check contents, in "constant-time" */ p = buf; bad = 0; bad |= *p++; /* First byte must be 0 */ p += hlen; /* Skip seed */ /* Check lHash */ for( i = 0; i < hlen; i++ ) bad |= lhash[i] ^ *p++; /* Get zero-padding len, but always read till end of buffer * (minus one, for the 01 byte) */ pad_len = 0; pad_done = 0; for( i = 0; i < ilen - 2 * hlen - 2; i++ ) { pad_done |= p[i]; pad_len += ( pad_done == 0 ); } p += pad_len; bad |= *p++ ^ 0x01; /* * The only information "leaked" is whether the padding was correct or not * (eg, no data is copied if it was not correct). This meets the * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between * the different error conditions. */ if( bad != 0 ) return( POLARSSL_ERR_RSA_INVALID_PADDING ); if( ilen - ( p - buf ) > output_max_len ) return( POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE ); *olen = ilen - (p - buf); memcpy( output, p, *olen ); return( 0 ); } #endif /* POLARSSL_PKCS1_V21 */ #if defined(POLARSSL_PKCS1_V15) /* * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function */ int rsa_rsaes_pkcs1_v15_decrypt( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, size_t *olen, const unsigned char *input, unsigned char *output, size_t output_max_len) { int ret; size_t ilen, pad_count = 0, i; unsigned char *p, bad, pad_done = 0; unsigned char buf[POLARSSL_MPI_MAX_SIZE]; if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V15 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); ilen = ctx->len; if( ilen < 16 || ilen > sizeof( buf ) ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); ret = ( mode == RSA_PUBLIC ) ? rsa_public( ctx, input, buf ) : rsa_private( ctx, f_rng, p_rng, input, buf ); if( ret != 0 ) return( ret ); p = buf; bad = 0; /* * Check and get padding len in "constant-time" */ bad |= *p++; /* First byte must be 0 */ /* This test does not depend on secret data */ if( mode == RSA_PRIVATE ) { bad |= *p++ ^ RSA_CRYPT; /* Get padding len, but always read till end of buffer * (minus one, for the 00 byte) */ for( i = 0; i < ilen - 3; i++ ) { pad_done |= ( p[i] == 0 ); pad_count += ( pad_done == 0 ); } p += pad_count; bad |= *p++; /* Must be zero */ } else { bad |= *p++ ^ RSA_SIGN; /* Get padding len, but always read till end of buffer * (minus one, for the 00 byte) */ for( i = 0; i < ilen - 3; i++ ) { pad_done |= ( p[i] != 0xFF ); pad_count += ( pad_done == 0 ); } p += pad_count; bad |= *p++; /* Must be zero */ } if( bad ) return( POLARSSL_ERR_RSA_INVALID_PADDING ); if( ilen - ( p - buf ) > output_max_len ) return( POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE ); *olen = ilen - (p - buf); memcpy( output, p, *olen ); return( 0 ); } #endif /* POLARSSL_PKCS1_V15 */ /* * Do an RSA operation, then remove the message padding */ int rsa_pkcs1_decrypt( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, size_t *olen, const unsigned char *input, unsigned char *output, size_t output_max_len) { switch( ctx->padding ) { #if defined(POLARSSL_PKCS1_V15) case RSA_PKCS_V15: return rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, mode, olen, input, output, output_max_len ); #endif #if defined(POLARSSL_PKCS1_V21) case RSA_PKCS_V21: return rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, mode, NULL, 0, olen, input, output, output_max_len ); #endif default: return( POLARSSL_ERR_RSA_INVALID_PADDING ); } } #if defined(POLARSSL_PKCS1_V21) /* * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function */ int rsa_rsassa_pss_sign( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, unsigned char *sig ) { size_t olen; unsigned char *p = sig; unsigned char salt[POLARSSL_MD_MAX_SIZE]; unsigned int slen, hlen, offset = 0; int ret; size_t msb; const md_info_t *md_info; md_context_t md_ctx; if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V21 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); if( f_rng == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); olen = ctx->len; if( md_alg != POLARSSL_MD_NONE ) { // Gather length of hash to sign // md_info = md_info_from_type( md_alg ); if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); hashlen = md_get_size( md_info ); } md_info = md_info_from_type( (md_type_t) ctx->hash_id ); if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); hlen = md_get_size( md_info ); slen = hlen; if( olen < hlen + slen + 2 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); memset( sig, 0, olen ); // Generate salt of length slen // if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 ) return( POLARSSL_ERR_RSA_RNG_FAILED + ret ); // Note: EMSA-PSS encoding is over the length of N - 1 bits // msb = mpi_msb( &ctx->N ) - 1; p += olen - hlen * 2 - 2; *p++ = 0x01; memcpy( p, salt, slen ); p += slen; md_init( &md_ctx ); md_init_ctx( &md_ctx, md_info, 0 ); // Generate H = Hash( M' ) // md_starts( &md_ctx ); md_update( &md_ctx, p, 8 ); md_update( &md_ctx, hash, hashlen ); md_update( &md_ctx, salt, slen ); md_finish( &md_ctx, p ); // Compensate for boundary condition when applying mask // if( msb % 8 == 0 ) offset = 1; // maskedDB: Apply dbMask to DB // mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx ); md_free( &md_ctx ); msb = mpi_msb( &ctx->N ) - 1; sig[0] &= 0xFF >> ( olen * 8 - msb ); p += hlen; *p++ = 0xBC; return( ( mode == RSA_PUBLIC ) ? rsa_public( ctx, sig, sig ) : rsa_private( ctx, f_rng, p_rng, sig, sig ) ); } #endif /* POLARSSL_PKCS1_V21 */ #if defined(POLARSSL_PKCS1_V15) /* * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function */ /* * Do an RSA operation to sign the message digest */ int rsa_rsassa_pkcs1_v15_sign( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, unsigned char *sig ) { size_t nb_pad, olen, oid_size = 0; unsigned char *p = sig; const char *oid = NULL; if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V15 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); olen = ctx->len; nb_pad = olen - 3; if( md_alg != POLARSSL_MD_NONE ) { const md_info_t *md_info = md_info_from_type( md_alg ); if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); if( oid_get_oid_by_md( md_alg, &oid, &oid_size ) != 0 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); nb_pad -= 10 + oid_size; hashlen = md_get_size( md_info ); } nb_pad -= hashlen; if( ( nb_pad < 8 ) || ( nb_pad > olen ) ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); *p++ = 0; *p++ = RSA_SIGN; memset( p, 0xFF, nb_pad ); p += nb_pad; *p++ = 0; if( md_alg == POLARSSL_MD_NONE ) { memcpy( p, hash, hashlen ); } else { /* * DigestInfo ::= SEQUENCE { * digestAlgorithm DigestAlgorithmIdentifier, * digest Digest } * * DigestAlgorithmIdentifier ::= AlgorithmIdentifier * * Digest ::= OCTET STRING */ *p++ = ASN1_SEQUENCE | ASN1_CONSTRUCTED; *p++ = (unsigned char) ( 0x08 + oid_size + hashlen ); *p++ = ASN1_SEQUENCE | ASN1_CONSTRUCTED; *p++ = (unsigned char) ( 0x04 + oid_size ); *p++ = ASN1_OID; *p++ = oid_size & 0xFF; memcpy( p, oid, oid_size ); p += oid_size; *p++ = ASN1_NULL; *p++ = 0x00; *p++ = ASN1_OCTET_STRING; *p++ = hashlen; memcpy( p, hash, hashlen ); } return( ( mode == RSA_PUBLIC ) ? rsa_public( ctx, sig, sig ) : rsa_private( ctx, f_rng, p_rng, sig, sig ) ); } #endif /* POLARSSL_PKCS1_V15 */ /* * Do an RSA operation to sign the message digest */ int rsa_pkcs1_sign( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, unsigned char *sig ) { switch( ctx->padding ) { #if defined(POLARSSL_PKCS1_V15) case RSA_PKCS_V15: return rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, mode, md_alg, hashlen, hash, sig ); #endif #if defined(POLARSSL_PKCS1_V21) case RSA_PKCS_V21: return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, md_alg, hashlen, hash, sig ); #endif default: return( POLARSSL_ERR_RSA_INVALID_PADDING ); } } #if defined(POLARSSL_PKCS1_V21) /* * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function */ int rsa_rsassa_pss_verify_ext( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, md_type_t mgf1_hash_id, int expected_salt_len, const unsigned char *sig ) { int ret; size_t siglen; unsigned char *p; unsigned char buf[POLARSSL_MPI_MAX_SIZE]; unsigned char result[POLARSSL_MD_MAX_SIZE]; unsigned char zeros[8]; unsigned int hlen; size_t slen, msb; const md_info_t *md_info; md_context_t md_ctx; if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V21 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); siglen = ctx->len; if( siglen < 16 || siglen > sizeof( buf ) ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); ret = ( mode == RSA_PUBLIC ) ? rsa_public( ctx, sig, buf ) : rsa_private( ctx, f_rng, p_rng, sig, buf ); if( ret != 0 ) return( ret ); p = buf; if( buf[siglen - 1] != 0xBC ) return( POLARSSL_ERR_RSA_INVALID_PADDING ); if( md_alg != POLARSSL_MD_NONE ) { // Gather length of hash to sign // md_info = md_info_from_type( md_alg ); if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); hashlen = md_get_size( md_info ); } md_info = md_info_from_type( mgf1_hash_id ); if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); hlen = md_get_size( md_info ); slen = siglen - hlen - 1; /* Currently length of salt + padding */ memset( zeros, 0, 8 ); // Note: EMSA-PSS verification is over the length of N - 1 bits // msb = mpi_msb( &ctx->N ) - 1; // Compensate for boundary condition when applying mask // if( msb % 8 == 0 ) { p++; siglen -= 1; } if( buf[0] >> ( 8 - siglen * 8 + msb ) ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); md_init( &md_ctx ); md_init_ctx( &md_ctx, md_info, 0 ); mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx ); buf[0] &= 0xFF >> ( siglen * 8 - msb ); while( p < buf + siglen && *p == 0 ) p++; if( p == buf + siglen || *p++ != 0x01 ) { md_free( &md_ctx ); return( POLARSSL_ERR_RSA_INVALID_PADDING ); } /* Actual salt len */ slen -= p - buf; if( expected_salt_len != RSA_SALT_LEN_ANY && slen != (size_t) expected_salt_len ) { md_free( &md_ctx ); return( POLARSSL_ERR_RSA_INVALID_PADDING ); } // Generate H = Hash( M' ) // md_starts( &md_ctx ); md_update( &md_ctx, zeros, 8 ); md_update( &md_ctx, hash, hashlen ); md_update( &md_ctx, p, slen ); md_finish( &md_ctx, result ); md_free( &md_ctx ); if( memcmp( p + slen, result, hlen ) == 0 ) return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED ); } /* * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function */ int rsa_rsassa_pss_verify( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, const unsigned char *sig ) { md_type_t mgf1_hash_id = ( ctx->hash_id != POLARSSL_MD_NONE ) ? (md_type_t) ctx->hash_id : md_alg; return( rsa_rsassa_pss_verify_ext( ctx, f_rng, p_rng, mode, md_alg, hashlen, hash, mgf1_hash_id, RSA_SALT_LEN_ANY, sig ) ); } #endif /* POLARSSL_PKCS1_V21 */ #if defined(POLARSSL_PKCS1_V15) /* * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function */ int rsa_rsassa_pkcs1_v15_verify( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, const unsigned char *sig ) { int ret; size_t len, siglen, asn1_len; unsigned char *p, *end; unsigned char buf[POLARSSL_MPI_MAX_SIZE]; md_type_t msg_md_alg; const md_info_t *md_info; asn1_buf oid; if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V15 ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); siglen = ctx->len; if( siglen < 16 || siglen > sizeof( buf ) ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); ret = ( mode == RSA_PUBLIC ) ? rsa_public( ctx, sig, buf ) : rsa_private( ctx, f_rng, p_rng, sig, buf ); if( ret != 0 ) return( ret ); p = buf; if( *p++ != 0 || *p++ != RSA_SIGN ) return( POLARSSL_ERR_RSA_INVALID_PADDING ); while( *p != 0 ) { if( p >= buf + siglen - 1 || *p != 0xFF ) return( POLARSSL_ERR_RSA_INVALID_PADDING ); p++; } p++; len = siglen - ( p - buf ); if( len == hashlen && md_alg == POLARSSL_MD_NONE ) { if( memcmp( p, hash, hashlen ) == 0 ) return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED ); } md_info = md_info_from_type( md_alg ); if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); hashlen = md_get_size( md_info ); end = p + len; // Parse the ASN.1 structure inside the PKCS#1 v1.5 structure // if( ( ret = asn1_get_tag( &p, end, &asn1_len, ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 ) return( POLARSSL_ERR_RSA_VERIFY_FAILED ); if( asn1_len + 2 != len ) return( POLARSSL_ERR_RSA_VERIFY_FAILED ); if( ( ret = asn1_get_tag( &p, end, &asn1_len, ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 ) return( POLARSSL_ERR_RSA_VERIFY_FAILED ); if( asn1_len + 6 + hashlen != len ) return( POLARSSL_ERR_RSA_VERIFY_FAILED ); if( ( ret = asn1_get_tag( &p, end, &oid.len, ASN1_OID ) ) != 0 ) return( POLARSSL_ERR_RSA_VERIFY_FAILED ); oid.p = p; p += oid.len; if( oid_get_md_alg( &oid, &msg_md_alg ) != 0 ) return( POLARSSL_ERR_RSA_VERIFY_FAILED ); if( md_alg != msg_md_alg ) return( POLARSSL_ERR_RSA_VERIFY_FAILED ); /* * assume the algorithm parameters must be NULL */ if( ( ret = asn1_get_tag( &p, end, &asn1_len, ASN1_NULL ) ) != 0 ) return( POLARSSL_ERR_RSA_VERIFY_FAILED ); if( ( ret = asn1_get_tag( &p, end, &asn1_len, ASN1_OCTET_STRING ) ) != 0 ) return( POLARSSL_ERR_RSA_VERIFY_FAILED ); if( asn1_len != hashlen ) return( POLARSSL_ERR_RSA_VERIFY_FAILED ); if( memcmp( p, hash, hashlen ) != 0 ) return( POLARSSL_ERR_RSA_VERIFY_FAILED ); p += hashlen; if( p != end ) return( POLARSSL_ERR_RSA_VERIFY_FAILED ); return( 0 ); } #endif /* POLARSSL_PKCS1_V15 */ /* * Do an RSA operation and check the message digest */ int rsa_pkcs1_verify( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, const unsigned char *sig ) { switch( ctx->padding ) { #if defined(POLARSSL_PKCS1_V15) case RSA_PKCS_V15: return rsa_rsassa_pkcs1_v15_verify( ctx, f_rng, p_rng, mode, md_alg, hashlen, hash, sig ); #endif #if defined(POLARSSL_PKCS1_V21) case RSA_PKCS_V21: return rsa_rsassa_pss_verify( ctx, f_rng, p_rng, mode, md_alg, hashlen, hash, sig ); #endif default: return( POLARSSL_ERR_RSA_INVALID_PADDING ); } } /* * Copy the components of an RSA key */ int rsa_copy( rsa_context *dst, const rsa_context *src ) { int ret; dst->ver = src->ver; dst->len = src->len; MPI_CHK( mpi_copy( &dst->N, &src->N ) ); MPI_CHK( mpi_copy( &dst->E, &src->E ) ); MPI_CHK( mpi_copy( &dst->D, &src->D ) ); MPI_CHK( mpi_copy( &dst->P, &src->P ) ); MPI_CHK( mpi_copy( &dst->Q, &src->Q ) ); MPI_CHK( mpi_copy( &dst->DP, &src->DP ) ); MPI_CHK( mpi_copy( &dst->DQ, &src->DQ ) ); MPI_CHK( mpi_copy( &dst->QP, &src->QP ) ); MPI_CHK( mpi_copy( &dst->RN, &src->RN ) ); MPI_CHK( mpi_copy( &dst->RP, &src->RP ) ); MPI_CHK( mpi_copy( &dst->RQ, &src->RQ ) ); MPI_CHK( mpi_copy( &dst->Vi, &src->Vi ) ); MPI_CHK( mpi_copy( &dst->Vf, &src->Vf ) ); dst->padding = src->padding; dst->hash_id = src->hash_id; cleanup: if( ret != 0 ) rsa_free( dst ); return( ret ); } /* * Free the components of an RSA key */ void rsa_free( rsa_context *ctx ) { mpi_free( &ctx->Vi ); mpi_free( &ctx->Vf ); mpi_free( &ctx->RQ ); mpi_free( &ctx->RP ); mpi_free( &ctx->RN ); mpi_free( &ctx->QP ); mpi_free( &ctx->DQ ); mpi_free( &ctx->DP ); mpi_free( &ctx->Q ); mpi_free( &ctx->P ); mpi_free( &ctx->D ); mpi_free( &ctx->E ); mpi_free( &ctx->N ); #if defined(POLARSSL_THREADING_C) polarssl_mutex_free( &ctx->mutex ); #endif } #if defined(POLARSSL_SELF_TEST) #include "mbedtls/sha1.h" /* * Example RSA-1024 keypair, for test purposes */ #define KEY_LEN 128 #define RSA_N "9292758453063D803DD603D5E777D788" \ "8ED1D5BF35786190FA2F23EBC0848AEA" \ "DDA92CA6C3D80B32C4D109BE0F36D6AE" \ "7130B9CED7ACDF54CFC7555AC14EEBAB" \ "93A89813FBF3C4F8066D2D800F7C38A8" \ "1AE31942917403FF4946B0A83D3D3E05" \ "EE57C6F5F5606FB5D4BC6CD34EE0801A" \ "5E94BB77B07507233A0BC7BAC8F90F79" #define RSA_E "10001" #define RSA_D "24BF6185468786FDD303083D25E64EFC" \ "66CA472BC44D253102F8B4A9D3BFA750" \ "91386C0077937FE33FA3252D28855837" \ "AE1B484A8A9A45F7EE8C0C634F99E8CD" \ "DF79C5CE07EE72C7F123142198164234" \ "CABB724CF78B8173B9F880FC86322407" \ "AF1FEDFDDE2BEB674CA15F3E81A1521E" \ "071513A1E85B5DFA031F21ECAE91A34D" #define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \ "2C01CAD19EA484A87EA4377637E75500" \ "FCB2005C5C7DD6EC4AC023CDA285D796" \ "C3D9E75E1EFC42488BB4F1D13AC30A57" #define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \ "E211C2B9E5DB1ED0BF61D0D9899620F4" \ "910E4168387E3C30AA1E00C339A79508" \ "8452DD96A9A5EA5D9DCA68DA636032AF" #define RSA_DP "C1ACF567564274FB07A0BBAD5D26E298" \ "3C94D22288ACD763FD8E5600ED4A702D" \ "F84198A5F06C2E72236AE490C93F07F8" \ "3CC559CD27BC2D1CA488811730BB5725" #define RSA_DQ "4959CBF6F8FEF750AEE6977C155579C7" \ "D8AAEA56749EA28623272E4F7D0592AF" \ "7C1F1313CAC9471B5C523BFE592F517B" \ "407A1BD76C164B93DA2D32A383E58357" #define RSA_QP "9AE7FBC99546432DF71896FC239EADAE" \ "F38D18D2B2F0E2DD275AA977E2BF4411" \ "F5A3B2A5D33605AEBBCCBA7FEB9F2D2F" \ "A74206CEC169D74BF5A8C50D6F48EA08" #define PT_LEN 24 #define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \ "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD" #if defined(POLARSSL_PKCS1_V15) static int myrand( void *rng_state, unsigned char *output, size_t len ) { #if !defined(__OpenBSD__) size_t i; if( rng_state != NULL ) rng_state = NULL; for( i = 0; i < len; ++i ) output[i] = rand(); #else if( rng_state != NULL ) rng_state = NULL; arc4random_buf( output, len ); #endif /* !OpenBSD */ return( 0 ); } #endif /* POLARSSL_PKCS1_V15 */ /* * Checkup routine */ int rsa_self_test( int verbose ) { int ret = 0; #if defined(POLARSSL_PKCS1_V15) size_t len; rsa_context rsa; unsigned char rsa_plaintext[PT_LEN]; unsigned char rsa_decrypted[PT_LEN]; unsigned char rsa_ciphertext[KEY_LEN]; #if defined(POLARSSL_SHA1_C) unsigned char sha1sum[20]; #endif rsa_init( &rsa, RSA_PKCS_V15, 0 ); rsa.len = KEY_LEN; MPI_CHK( mpi_read_string( &rsa.N , 16, RSA_N ) ); MPI_CHK( mpi_read_string( &rsa.E , 16, RSA_E ) ); MPI_CHK( mpi_read_string( &rsa.D , 16, RSA_D ) ); MPI_CHK( mpi_read_string( &rsa.P , 16, RSA_P ) ); MPI_CHK( mpi_read_string( &rsa.Q , 16, RSA_Q ) ); MPI_CHK( mpi_read_string( &rsa.DP, 16, RSA_DP ) ); MPI_CHK( mpi_read_string( &rsa.DQ, 16, RSA_DQ ) ); MPI_CHK( mpi_read_string( &rsa.QP, 16, RSA_QP ) ); if( verbose != 0 ) polarssl_printf( " RSA key validation: " ); if( rsa_check_pubkey( &rsa ) != 0 || rsa_check_privkey( &rsa ) != 0 ) { if( verbose != 0 ) polarssl_printf( "failed\n" ); return( 1 ); } if( verbose != 0 ) polarssl_printf( "passed\n PKCS#1 encryption : " ); memcpy( rsa_plaintext, RSA_PT, PT_LEN ); if( rsa_pkcs1_encrypt( &rsa, myrand, NULL, RSA_PUBLIC, PT_LEN, rsa_plaintext, rsa_ciphertext ) != 0 ) { if( verbose != 0 ) polarssl_printf( "failed\n" ); return( 1 ); } if( verbose != 0 ) polarssl_printf( "passed\n PKCS#1 decryption : " ); if( rsa_pkcs1_decrypt( &rsa, myrand, NULL, RSA_PRIVATE, &len, rsa_ciphertext, rsa_decrypted, sizeof(rsa_decrypted) ) != 0 ) { if( verbose != 0 ) polarssl_printf( "failed\n" ); return( 1 ); } if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 ) { if( verbose != 0 ) polarssl_printf( "failed\n" ); return( 1 ); } #if defined(POLARSSL_SHA1_C) if( verbose != 0 ) polarssl_printf( "passed\n PKCS#1 data sign : " ); sha1( rsa_plaintext, PT_LEN, sha1sum ); if( rsa_pkcs1_sign( &rsa, myrand, NULL, RSA_PRIVATE, POLARSSL_MD_SHA1, 0, sha1sum, rsa_ciphertext ) != 0 ) { if( verbose != 0 ) polarssl_printf( "failed\n" ); return( 1 ); } if( verbose != 0 ) polarssl_printf( "passed\n PKCS#1 sig. verify: " ); if( rsa_pkcs1_verify( &rsa, NULL, NULL, RSA_PUBLIC, POLARSSL_MD_SHA1, 0, sha1sum, rsa_ciphertext ) != 0 ) { if( verbose != 0 ) polarssl_printf( "failed\n" ); return( 1 ); } if( verbose != 0 ) polarssl_printf( "passed\n\n" ); #endif /* POLARSSL_SHA1_C */ cleanup: rsa_free( &rsa ); #else /* POLARSSL_PKCS1_V15 */ ((void) verbose); #endif /* POLARSSL_PKCS1_V15 */ return( ret ); } #endif /* POLARSSL_SELF_TEST */ #endif /* POLARSSL_RSA_C */