/* * FIPS-180-2 compliant SHA-256 implementation * * Copyright (C) 2006-2014, ARM Limited, All Rights Reserved * * This file is part of mbed TLS (https://tls.mbed.org) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* * The SHA-256 Secure Hash Standard was published by NIST in 2002. * * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf */ #if !defined(POLARSSL_CONFIG_FILE) #include "mbedtls/config.h" #else #include POLARSSL_CONFIG_FILE #endif #if defined(POLARSSL_SHA256_C) #include "mbedtls/sha256.h" #include #if defined(POLARSSL_FS_IO) #include #endif #if defined(POLARSSL_SELF_TEST) #if defined(POLARSSL_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define polarssl_printf printf #endif /* POLARSSL_PLATFORM_C */ #endif /* POLARSSL_SELF_TEST */ /* Implementation that should never be optimized out by the compiler */ static void polarssl_zeroize( void *v, size_t n ) { volatile unsigned char *p = v; while( n-- ) *p++ = 0; } #if !defined(POLARSSL_SHA256_ALT) /* * 32-bit integer manipulation macros (big endian) */ #ifndef GET_UINT32_BE #define GET_UINT32_BE(n,b,i) \ { \ (n) = ( (uint32_t) (b)[(i) ] << 24 ) \ | ( (uint32_t) (b)[(i) + 1] << 16 ) \ | ( (uint32_t) (b)[(i) + 2] << 8 ) \ | ( (uint32_t) (b)[(i) + 3] ); \ } #endif #ifndef PUT_UINT32_BE #define PUT_UINT32_BE(n,b,i) \ { \ (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \ (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \ (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \ (b)[(i) + 3] = (unsigned char) ( (n) ); \ } #endif void sha256_init( sha256_context *ctx ) { memset( ctx, 0, sizeof( sha256_context ) ); } void sha256_free( sha256_context *ctx ) { if( ctx == NULL ) return; polarssl_zeroize( ctx, sizeof( sha256_context ) ); } /* * SHA-256 context setup */ void sha256_starts( sha256_context *ctx, int is224 ) { ctx->total[0] = 0; ctx->total[1] = 0; if( is224 == 0 ) { /* SHA-256 */ ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } else { /* SHA-224 */ ctx->state[0] = 0xC1059ED8; ctx->state[1] = 0x367CD507; ctx->state[2] = 0x3070DD17; ctx->state[3] = 0xF70E5939; ctx->state[4] = 0xFFC00B31; ctx->state[5] = 0x68581511; ctx->state[6] = 0x64F98FA7; ctx->state[7] = 0xBEFA4FA4; } ctx->is224 = is224; } void sha256_process( sha256_context *ctx, const unsigned char data[64] ) { uint32_t temp1, temp2, W[64]; uint32_t A, B, C, D, E, F, G, H; GET_UINT32_BE( W[ 0], data, 0 ); GET_UINT32_BE( W[ 1], data, 4 ); GET_UINT32_BE( W[ 2], data, 8 ); GET_UINT32_BE( W[ 3], data, 12 ); GET_UINT32_BE( W[ 4], data, 16 ); GET_UINT32_BE( W[ 5], data, 20 ); GET_UINT32_BE( W[ 6], data, 24 ); GET_UINT32_BE( W[ 7], data, 28 ); GET_UINT32_BE( W[ 8], data, 32 ); GET_UINT32_BE( W[ 9], data, 36 ); GET_UINT32_BE( W[10], data, 40 ); GET_UINT32_BE( W[11], data, 44 ); GET_UINT32_BE( W[12], data, 48 ); GET_UINT32_BE( W[13], data, 52 ); GET_UINT32_BE( W[14], data, 56 ); GET_UINT32_BE( W[15], data, 60 ); #define SHR(x,n) ((x & 0xFFFFFFFF) >> n) #define ROTR(x,n) (SHR(x,n) | (x << (32 - n))) #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3)) #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25)) #define F0(x,y,z) ((x & y) | (z & (x | y))) #define F1(x,y,z) (z ^ (x & (y ^ z))) #define R(t) \ ( \ W[t] = S1(W[t - 2]) + W[t - 7] + \ S0(W[t - 15]) + W[t - 16] \ ) #define P(a,b,c,d,e,f,g,h,x,K) \ { \ temp1 = h + S3(e) + F1(e,f,g) + K + x; \ temp2 = S2(a) + F0(a,b,c); \ d += temp1; h = temp1 + temp2; \ } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; F = ctx->state[5]; G = ctx->state[6]; H = ctx->state[7]; P( A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98 ); P( H, A, B, C, D, E, F, G, W[ 1], 0x71374491 ); P( G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF ); P( F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5 ); P( E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B ); P( D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1 ); P( C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4 ); P( B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5 ); P( A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98 ); P( H, A, B, C, D, E, F, G, W[ 9], 0x12835B01 ); P( G, H, A, B, C, D, E, F, W[10], 0x243185BE ); P( F, G, H, A, B, C, D, E, W[11], 0x550C7DC3 ); P( E, F, G, H, A, B, C, D, W[12], 0x72BE5D74 ); P( D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE ); P( C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7 ); P( B, C, D, E, F, G, H, A, W[15], 0xC19BF174 ); P( A, B, C, D, E, F, G, H, R(16), 0xE49B69C1 ); P( H, A, B, C, D, E, F, G, R(17), 0xEFBE4786 ); P( G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6 ); P( F, G, H, A, B, C, D, E, R(19), 0x240CA1CC ); P( E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F ); P( D, E, F, G, H, A, B, C, R(21), 0x4A7484AA ); P( C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC ); P( B, C, D, E, F, G, H, A, R(23), 0x76F988DA ); P( A, B, C, D, E, F, G, H, R(24), 0x983E5152 ); P( H, A, B, C, D, E, F, G, R(25), 0xA831C66D ); P( G, H, A, B, C, D, E, F, R(26), 0xB00327C8 ); P( F, G, H, A, B, C, D, E, R(27), 0xBF597FC7 ); P( E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3 ); P( D, E, F, G, H, A, B, C, R(29), 0xD5A79147 ); P( C, D, E, F, G, H, A, B, R(30), 0x06CA6351 ); P( B, C, D, E, F, G, H, A, R(31), 0x14292967 ); P( A, B, C, D, E, F, G, H, R(32), 0x27B70A85 ); P( H, A, B, C, D, E, F, G, R(33), 0x2E1B2138 ); P( G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC ); P( F, G, H, A, B, C, D, E, R(35), 0x53380D13 ); P( E, F, G, H, A, B, C, D, R(36), 0x650A7354 ); P( D, E, F, G, H, A, B, C, R(37), 0x766A0ABB ); P( C, D, E, F, G, H, A, B, R(38), 0x81C2C92E ); P( B, C, D, E, F, G, H, A, R(39), 0x92722C85 ); P( A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1 ); P( H, A, B, C, D, E, F, G, R(41), 0xA81A664B ); P( G, H, A, B, C, D, E, F, R(42), 0xC24B8B70 ); P( F, G, H, A, B, C, D, E, R(43), 0xC76C51A3 ); P( E, F, G, H, A, B, C, D, R(44), 0xD192E819 ); P( D, E, F, G, H, A, B, C, R(45), 0xD6990624 ); P( C, D, E, F, G, H, A, B, R(46), 0xF40E3585 ); P( B, C, D, E, F, G, H, A, R(47), 0x106AA070 ); P( A, B, C, D, E, F, G, H, R(48), 0x19A4C116 ); P( H, A, B, C, D, E, F, G, R(49), 0x1E376C08 ); P( G, H, A, B, C, D, E, F, R(50), 0x2748774C ); P( F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5 ); P( E, F, G, H, A, B, C, D, R(52), 0x391C0CB3 ); P( D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A ); P( C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F ); P( B, C, D, E, F, G, H, A, R(55), 0x682E6FF3 ); P( A, B, C, D, E, F, G, H, R(56), 0x748F82EE ); P( H, A, B, C, D, E, F, G, R(57), 0x78A5636F ); P( G, H, A, B, C, D, E, F, R(58), 0x84C87814 ); P( F, G, H, A, B, C, D, E, R(59), 0x8CC70208 ); P( E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA ); P( D, E, F, G, H, A, B, C, R(61), 0xA4506CEB ); P( C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7 ); P( B, C, D, E, F, G, H, A, R(63), 0xC67178F2 ); ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; ctx->state[5] += F; ctx->state[6] += G; ctx->state[7] += H; } /* * SHA-256 process buffer */ void sha256_update( sha256_context *ctx, const unsigned char *input, size_t ilen ) { size_t fill; uint32_t left; if( ilen == 0 ) return; left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += (uint32_t) ilen; ctx->total[0] &= 0xFFFFFFFF; if( ctx->total[0] < (uint32_t) ilen ) ctx->total[1]++; if( left && ilen >= fill ) { memcpy( (void *) (ctx->buffer + left), input, fill ); sha256_process( ctx, ctx->buffer ); input += fill; ilen -= fill; left = 0; } while( ilen >= 64 ) { sha256_process( ctx, input ); input += 64; ilen -= 64; } if( ilen > 0 ) memcpy( (void *) (ctx->buffer + left), input, ilen ); } static const unsigned char sha256_padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* * SHA-256 final digest */ void sha256_finish( sha256_context *ctx, unsigned char output[32] ) { uint32_t last, padn; uint32_t high, low; unsigned char msglen[8]; high = ( ctx->total[0] >> 29 ) | ( ctx->total[1] << 3 ); low = ( ctx->total[0] << 3 ); PUT_UINT32_BE( high, msglen, 0 ); PUT_UINT32_BE( low, msglen, 4 ); last = ctx->total[0] & 0x3F; padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last ); sha256_update( ctx, sha256_padding, padn ); sha256_update( ctx, msglen, 8 ); PUT_UINT32_BE( ctx->state[0], output, 0 ); PUT_UINT32_BE( ctx->state[1], output, 4 ); PUT_UINT32_BE( ctx->state[2], output, 8 ); PUT_UINT32_BE( ctx->state[3], output, 12 ); PUT_UINT32_BE( ctx->state[4], output, 16 ); PUT_UINT32_BE( ctx->state[5], output, 20 ); PUT_UINT32_BE( ctx->state[6], output, 24 ); if( ctx->is224 == 0 ) PUT_UINT32_BE( ctx->state[7], output, 28 ); } #endif /* !POLARSSL_SHA256_ALT */ /* * output = SHA-256( input buffer ) */ void sha256( const unsigned char *input, size_t ilen, unsigned char output[32], int is224 ) { sha256_context ctx; sha256_init( &ctx ); sha256_starts( &ctx, is224 ); sha256_update( &ctx, input, ilen ); sha256_finish( &ctx, output ); sha256_free( &ctx ); } #if defined(POLARSSL_FS_IO) /* * output = SHA-256( file contents ) */ int sha256_file( const char *path, unsigned char output[32], int is224 ) { FILE *f; size_t n; sha256_context ctx; unsigned char buf[1024]; if( ( f = fopen( path, "rb" ) ) == NULL ) return( POLARSSL_ERR_SHA256_FILE_IO_ERROR ); sha256_init( &ctx ); sha256_starts( &ctx, is224 ); while( ( n = fread( buf, 1, sizeof( buf ), f ) ) > 0 ) sha256_update( &ctx, buf, n ); sha256_finish( &ctx, output ); sha256_free( &ctx ); if( ferror( f ) != 0 ) { fclose( f ); return( POLARSSL_ERR_SHA256_FILE_IO_ERROR ); } fclose( f ); return( 0 ); } #endif /* POLARSSL_FS_IO */ #if defined(POLARSSL_SELF_TEST) /* * FIPS-180-2 test vectors */ static const unsigned char sha256_test_buf[3][57] = { { "abc" }, { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" }, { "" } }; static const int sha256_test_buflen[3] = { 3, 56, 1000 }; static const unsigned char sha256_test_sum[6][32] = { /* * SHA-224 test vectors */ { 0x23, 0x09, 0x7D, 0x22, 0x34, 0x05, 0xD8, 0x22, 0x86, 0x42, 0xA4, 0x77, 0xBD, 0xA2, 0x55, 0xB3, 0x2A, 0xAD, 0xBC, 0xE4, 0xBD, 0xA0, 0xB3, 0xF7, 0xE3, 0x6C, 0x9D, 0xA7 }, { 0x75, 0x38, 0x8B, 0x16, 0x51, 0x27, 0x76, 0xCC, 0x5D, 0xBA, 0x5D, 0xA1, 0xFD, 0x89, 0x01, 0x50, 0xB0, 0xC6, 0x45, 0x5C, 0xB4, 0xF5, 0x8B, 0x19, 0x52, 0x52, 0x25, 0x25 }, { 0x20, 0x79, 0x46, 0x55, 0x98, 0x0C, 0x91, 0xD8, 0xBB, 0xB4, 0xC1, 0xEA, 0x97, 0x61, 0x8A, 0x4B, 0xF0, 0x3F, 0x42, 0x58, 0x19, 0x48, 0xB2, 0xEE, 0x4E, 0xE7, 0xAD, 0x67 }, /* * SHA-256 test vectors */ { 0xBA, 0x78, 0x16, 0xBF, 0x8F, 0x01, 0xCF, 0xEA, 0x41, 0x41, 0x40, 0xDE, 0x5D, 0xAE, 0x22, 0x23, 0xB0, 0x03, 0x61, 0xA3, 0x96, 0x17, 0x7A, 0x9C, 0xB4, 0x10, 0xFF, 0x61, 0xF2, 0x00, 0x15, 0xAD }, { 0x24, 0x8D, 0x6A, 0x61, 0xD2, 0x06, 0x38, 0xB8, 0xE5, 0xC0, 0x26, 0x93, 0x0C, 0x3E, 0x60, 0x39, 0xA3, 0x3C, 0xE4, 0x59, 0x64, 0xFF, 0x21, 0x67, 0xF6, 0xEC, 0xED, 0xD4, 0x19, 0xDB, 0x06, 0xC1 }, { 0xCD, 0xC7, 0x6E, 0x5C, 0x99, 0x14, 0xFB, 0x92, 0x81, 0xA1, 0xC7, 0xE2, 0x84, 0xD7, 0x3E, 0x67, 0xF1, 0x80, 0x9A, 0x48, 0xA4, 0x97, 0x20, 0x0E, 0x04, 0x6D, 0x39, 0xCC, 0xC7, 0x11, 0x2C, 0xD0 } }; /* * Checkup routine */ int sha256_self_test( int verbose ) { int i, j, k, buflen, ret = 0; unsigned char buf[1024]; unsigned char sha256sum[32]; sha256_context ctx; sha256_init( &ctx ); for( i = 0; i < 6; i++ ) { j = i % 3; k = i < 3; if( verbose != 0 ) polarssl_printf( " SHA-%d test #%d: ", 256 - k * 32, j + 1 ); sha256_starts( &ctx, k ); if( j == 2 ) { memset( buf, 'a', buflen = 1000 ); for( j = 0; j < 1000; j++ ) sha256_update( &ctx, buf, buflen ); } else sha256_update( &ctx, sha256_test_buf[j], sha256_test_buflen[j] ); sha256_finish( &ctx, sha256sum ); if( memcmp( sha256sum, sha256_test_sum[i], 32 - k * 4 ) != 0 ) { if( verbose != 0 ) polarssl_printf( "failed\n" ); ret = 1; goto exit; } if( verbose != 0 ) polarssl_printf( "passed\n" ); } if( verbose != 0 ) polarssl_printf( "\n" ); exit: sha256_free( &ctx ); return( ret ); } #endif /* POLARSSL_SELF_TEST */ #endif /* POLARSSL_SHA256_C */