/* * Implementation of NIST SP 800-38F key wrapping, supporting KW and KWP modes * only * * Copyright (C) 2018, Arm Limited (or its affiliates), All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of Mbed TLS (https://tls.mbed.org) */ /* * Definition of Key Wrapping: * https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf * RFC 3394 "Advanced Encryption Standard (AES) Key Wrap Algorithm" * RFC 5649 "Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm" * * Note: RFC 3394 defines different methodology for intermediate operations for * the wrapping and unwrapping operation than the definition in NIST SP 800-38F. */ #if !defined(MBEDTLS_CONFIG_FILE) #include "mbedtls/config.h" #else #include MBEDTLS_CONFIG_FILE #endif #if defined(MBEDTLS_NIST_KW_C) #include "mbedtls/nist_kw.h" #include "mbedtls/platform_util.h" #include #include #if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_AES_C) #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define mbedtls_printf printf #endif /* MBEDTLS_PLATFORM_C */ #endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */ #if !defined(MBEDTLS_NIST_KW_ALT) #define KW_SEMIBLOCK_LENGTH 8 #define MIN_SEMIBLOCKS_COUNT 3 /* constant-time buffer comparison */ static inline unsigned char mbedtls_nist_kw_safer_memcmp( const void *a, const void *b, size_t n ) { size_t i; volatile const unsigned char *A = (volatile const unsigned char *) a; volatile const unsigned char *B = (volatile const unsigned char *) b; volatile unsigned char diff = 0; for( i = 0; i < n; i++ ) { /* Read volatile data in order before computing diff. * This avoids IAR compiler warning: * 'the order of volatile accesses is undefined ..' */ unsigned char x = A[i], y = B[i]; diff |= x ^ y; } return( diff ); } /*! The 64-bit default integrity check value (ICV) for KW mode. */ static const unsigned char NIST_KW_ICV1[] = {0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6}; /*! The 32-bit default integrity check value (ICV) for KWP mode. */ static const unsigned char NIST_KW_ICV2[] = {0xA6, 0x59, 0x59, 0xA6}; #ifndef GET_UINT32_BE #define GET_UINT32_BE(n,b,i) \ do { \ (n) = ( (uint32_t) (b)[(i) ] << 24 ) \ | ( (uint32_t) (b)[(i) + 1] << 16 ) \ | ( (uint32_t) (b)[(i) + 2] << 8 ) \ | ( (uint32_t) (b)[(i) + 3] ); \ } while( 0 ) #endif #ifndef PUT_UINT32_BE #define PUT_UINT32_BE(n,b,i) \ do { \ (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \ (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \ (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \ (b)[(i) + 3] = (unsigned char) ( (n) ); \ } while( 0 ) #endif /* * Initialize context */ void mbedtls_nist_kw_init( mbedtls_nist_kw_context *ctx ) { memset( ctx, 0, sizeof( mbedtls_nist_kw_context ) ); } int mbedtls_nist_kw_setkey( mbedtls_nist_kw_context *ctx, mbedtls_cipher_id_t cipher, const unsigned char *key, unsigned int keybits, const int is_wrap ) { int ret; const mbedtls_cipher_info_t *cipher_info; cipher_info = mbedtls_cipher_info_from_values( cipher, keybits, MBEDTLS_MODE_ECB ); if( cipher_info == NULL ) return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); if( cipher_info->block_size != 16 ) return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); /* * SP 800-38F currently defines AES cipher as the only block cipher allowed: * "For KW and KWP, the underlying block cipher shall be approved, and the * block size shall be 128 bits. Currently, the AES block cipher, with key * lengths of 128, 192, or 256 bits, is the only block cipher that fits * this profile." * Currently we don't support other 128 bit block ciphers for key wrapping, * such as Camellia and Aria. */ if( cipher != MBEDTLS_CIPHER_ID_AES ) return( MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE ); mbedtls_cipher_free( &ctx->cipher_ctx ); if( ( ret = mbedtls_cipher_setup( &ctx->cipher_ctx, cipher_info ) ) != 0 ) return( ret ); if( ( ret = mbedtls_cipher_setkey( &ctx->cipher_ctx, key, keybits, is_wrap ? MBEDTLS_ENCRYPT : MBEDTLS_DECRYPT ) ) != 0 ) { return( ret ); } return( 0 ); } /* * Free context */ void mbedtls_nist_kw_free( mbedtls_nist_kw_context *ctx ) { mbedtls_cipher_free( &ctx->cipher_ctx ); mbedtls_platform_zeroize( ctx, sizeof( mbedtls_nist_kw_context ) ); } /* * Helper function for Xoring the uint64_t "t" with the encrypted A. * Defined in NIST SP 800-38F section 6.1 */ static void calc_a_xor_t( unsigned char A[KW_SEMIBLOCK_LENGTH], uint64_t t ) { size_t i = 0; for( i = 0; i < sizeof( t ); i++ ) { A[i] ^= ( t >> ( ( sizeof( t ) - 1 - i ) * 8 ) ) & 0xff; } } /* * KW-AE as defined in SP 800-38F section 6.2 * KWP-AE as defined in SP 800-38F section 6.3 */ int mbedtls_nist_kw_wrap( mbedtls_nist_kw_context *ctx, mbedtls_nist_kw_mode_t mode, const unsigned char *input, size_t in_len, unsigned char *output, size_t *out_len, size_t out_size ) { int ret = 0; size_t semiblocks = 0; size_t s; size_t olen, padlen = 0; uint64_t t = 0; unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2]; unsigned char inbuff[KW_SEMIBLOCK_LENGTH * 2]; unsigned char *R2 = output + KW_SEMIBLOCK_LENGTH; unsigned char *A = output; *out_len = 0; /* * Generate the String to work on */ if( mode == MBEDTLS_KW_MODE_KW ) { if( out_size < in_len + KW_SEMIBLOCK_LENGTH ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } /* * According to SP 800-38F Table 1, the plaintext length for KW * must be between 2 to 2^54-1 semiblocks inclusive. */ if( in_len < 16 || #if SIZE_MAX > 0x1FFFFFFFFFFFFF8 in_len > 0x1FFFFFFFFFFFFF8 || #endif in_len % KW_SEMIBLOCK_LENGTH != 0 ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } memcpy( output, NIST_KW_ICV1, KW_SEMIBLOCK_LENGTH ); memmove( output + KW_SEMIBLOCK_LENGTH, input, in_len ); } else { if( in_len % 8 != 0 ) { padlen = ( 8 - ( in_len % 8 ) ); } if( out_size < in_len + KW_SEMIBLOCK_LENGTH + padlen ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } /* * According to SP 800-38F Table 1, the plaintext length for KWP * must be between 1 and 2^32-1 octets inclusive. */ if( in_len < 1 #if SIZE_MAX > 0xFFFFFFFF || in_len > 0xFFFFFFFF #endif ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } memcpy( output, NIST_KW_ICV2, KW_SEMIBLOCK_LENGTH / 2 ); PUT_UINT32_BE( ( in_len & 0xffffffff ), output, KW_SEMIBLOCK_LENGTH / 2 ); memcpy( output + KW_SEMIBLOCK_LENGTH, input, in_len ); memset( output + KW_SEMIBLOCK_LENGTH + in_len, 0, padlen ); } semiblocks = ( ( in_len + padlen ) / KW_SEMIBLOCK_LENGTH ) + 1; s = 6 * ( semiblocks - 1 ); if( mode == MBEDTLS_KW_MODE_KWP && in_len <= KW_SEMIBLOCK_LENGTH ) { memcpy( inbuff, output, 16 ); ret = mbedtls_cipher_update( &ctx->cipher_ctx, inbuff, 16, output, &olen ); if( ret != 0 ) goto cleanup; } else { /* * Do the wrapping function W, as defined in RFC 3394 section 2.2.1 */ if( semiblocks < MIN_SEMIBLOCKS_COUNT ) { ret = MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA; goto cleanup; } /* Calculate intermediate values */ for( t = 1; t <= s; t++ ) { memcpy( inbuff, A, KW_SEMIBLOCK_LENGTH ); memcpy( inbuff + KW_SEMIBLOCK_LENGTH, R2, KW_SEMIBLOCK_LENGTH ); ret = mbedtls_cipher_update( &ctx->cipher_ctx, inbuff, 16, outbuff, &olen ); if( ret != 0 ) goto cleanup; memcpy( A, outbuff, KW_SEMIBLOCK_LENGTH ); calc_a_xor_t( A, t ); memcpy( R2, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH ); R2 += KW_SEMIBLOCK_LENGTH; if( R2 >= output + ( semiblocks * KW_SEMIBLOCK_LENGTH ) ) R2 = output + KW_SEMIBLOCK_LENGTH; } } *out_len = semiblocks * KW_SEMIBLOCK_LENGTH; cleanup: if( ret != 0) { memset( output, 0, semiblocks * KW_SEMIBLOCK_LENGTH ); } mbedtls_platform_zeroize( inbuff, KW_SEMIBLOCK_LENGTH * 2 ); mbedtls_platform_zeroize( outbuff, KW_SEMIBLOCK_LENGTH * 2 ); mbedtls_cipher_finish( &ctx->cipher_ctx, NULL, &olen ); return( ret ); } /* * W-1 function as defined in RFC 3394 section 2.2.2 * This function assumes the following: * 1. Output buffer is at least of size ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH. * 2. The input buffer is of size semiblocks * KW_SEMIBLOCK_LENGTH. * 3. Minimal number of semiblocks is 3. * 4. A is a buffer to hold the first semiblock of the input buffer. */ static int unwrap( mbedtls_nist_kw_context *ctx, const unsigned char *input, size_t semiblocks, unsigned char A[KW_SEMIBLOCK_LENGTH], unsigned char *output, size_t* out_len ) { int ret = 0; const size_t s = 6 * ( semiblocks - 1 ); size_t olen; uint64_t t = 0; unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2]; unsigned char inbuff[KW_SEMIBLOCK_LENGTH * 2]; unsigned char *R = output + ( semiblocks - 2 ) * KW_SEMIBLOCK_LENGTH; *out_len = 0; if( semiblocks < MIN_SEMIBLOCKS_COUNT ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } memcpy( A, input, KW_SEMIBLOCK_LENGTH ); memmove( output, input + KW_SEMIBLOCK_LENGTH, ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH ); /* Calculate intermediate values */ for( t = s; t >= 1; t-- ) { calc_a_xor_t( A, t ); memcpy( inbuff, A, KW_SEMIBLOCK_LENGTH ); memcpy( inbuff + KW_SEMIBLOCK_LENGTH, R, KW_SEMIBLOCK_LENGTH ); ret = mbedtls_cipher_update( &ctx->cipher_ctx, inbuff, 16, outbuff, &olen ); if( ret != 0 ) goto cleanup; memcpy( A, outbuff, KW_SEMIBLOCK_LENGTH ); /* Set R as LSB64 of outbuff */ memcpy( R, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH ); if( R == output ) R = output + ( semiblocks - 2 ) * KW_SEMIBLOCK_LENGTH; else R -= KW_SEMIBLOCK_LENGTH; } *out_len = ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH; cleanup: if( ret != 0) memset( output, 0, ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH ); mbedtls_platform_zeroize( inbuff, sizeof( inbuff ) ); mbedtls_platform_zeroize( outbuff, sizeof( outbuff ) ); return( ret ); } /* * KW-AD as defined in SP 800-38F section 6.2 * KWP-AD as defined in SP 800-38F section 6.3 */ int mbedtls_nist_kw_unwrap( mbedtls_nist_kw_context *ctx, mbedtls_nist_kw_mode_t mode, const unsigned char *input, size_t in_len, unsigned char *output, size_t *out_len, size_t out_size ) { int ret = 0; size_t i, olen; unsigned char A[KW_SEMIBLOCK_LENGTH]; unsigned char diff, bad_padding = 0; *out_len = 0; if( out_size < in_len - KW_SEMIBLOCK_LENGTH ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } if( mode == MBEDTLS_KW_MODE_KW ) { /* * According to SP 800-38F Table 1, the ciphertext length for KW * must be between 3 to 2^54 semiblocks inclusive. */ if( in_len < 24 || #if SIZE_MAX > 0x200000000000000 in_len > 0x200000000000000 || #endif in_len % KW_SEMIBLOCK_LENGTH != 0 ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } ret = unwrap( ctx, input, in_len / KW_SEMIBLOCK_LENGTH, A, output, out_len ); if( ret != 0 ) goto cleanup; /* Check ICV in "constant-time" */ diff = mbedtls_nist_kw_safer_memcmp( NIST_KW_ICV1, A, KW_SEMIBLOCK_LENGTH ); if( diff != 0 ) { ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED; goto cleanup; } } else if( mode == MBEDTLS_KW_MODE_KWP ) { size_t padlen = 0; uint32_t Plen; /* * According to SP 800-38F Table 1, the ciphertext length for KWP * must be between 2 to 2^29 semiblocks inclusive. */ if( in_len < KW_SEMIBLOCK_LENGTH * 2 || #if SIZE_MAX > 0x100000000 in_len > 0x100000000 || #endif in_len % KW_SEMIBLOCK_LENGTH != 0 ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } if( in_len == KW_SEMIBLOCK_LENGTH * 2 ) { unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2]; ret = mbedtls_cipher_update( &ctx->cipher_ctx, input, 16, outbuff, &olen ); if( ret != 0 ) goto cleanup; memcpy( A, outbuff, KW_SEMIBLOCK_LENGTH ); memcpy( output, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH ); mbedtls_platform_zeroize( outbuff, sizeof( outbuff ) ); *out_len = KW_SEMIBLOCK_LENGTH; } else { /* in_len >= KW_SEMIBLOCK_LENGTH * 3 */ ret = unwrap( ctx, input, in_len / KW_SEMIBLOCK_LENGTH, A, output, out_len ); if( ret != 0 ) goto cleanup; } /* Check ICV in "constant-time" */ diff = mbedtls_nist_kw_safer_memcmp( NIST_KW_ICV2, A, KW_SEMIBLOCK_LENGTH / 2 ); if( diff != 0 ) { ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED; } GET_UINT32_BE( Plen, A, KW_SEMIBLOCK_LENGTH / 2 ); /* * Plen is the length of the plaintext, when the input is valid. * If Plen is larger than the plaintext and padding, padlen will be * larger than 8, because of the type wrap around. */ padlen = in_len - KW_SEMIBLOCK_LENGTH - Plen; if ( padlen > 7 ) { padlen &= 7; ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED; } /* Check padding in "constant-time" */ for( diff = 0, i = 0; i < KW_SEMIBLOCK_LENGTH; i++ ) { if( i >= KW_SEMIBLOCK_LENGTH - padlen ) diff |= output[*out_len - KW_SEMIBLOCK_LENGTH + i]; else bad_padding |= output[*out_len - KW_SEMIBLOCK_LENGTH + i]; } if( diff != 0 ) { ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED; } if( ret != 0 ) { goto cleanup; } memset( output + Plen, 0, padlen ); *out_len = Plen; } else { ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE; goto cleanup; } cleanup: if( ret != 0 ) { memset( output, 0, *out_len ); *out_len = 0; } mbedtls_platform_zeroize( &bad_padding, sizeof( bad_padding) ); mbedtls_platform_zeroize( &diff, sizeof( diff ) ); mbedtls_platform_zeroize( A, sizeof( A ) ); mbedtls_cipher_finish( &ctx->cipher_ctx, NULL, &olen ); return( ret ); } #endif /* !MBEDTLS_NIST_KW_ALT */ #endif /* MBEDTLS_NIST_KW_C */