/* * Elliptic curves over GF(p): curve-specific data and functions * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common.h" #if defined(MBEDTLS_ECP_C) #include "mbedtls/ecp.h" #include "mbedtls/platform_util.h" #include "mbedtls/error.h" #include "ecp_invasive.h" #include #if !defined(MBEDTLS_ECP_ALT) /* Parameter validation macros based on platform_util.h */ #define ECP_VALIDATE_RET( cond ) \ MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA ) #define ECP_VALIDATE( cond ) \ MBEDTLS_INTERNAL_VALIDATE( cond ) #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \ !defined(inline) && !defined(__cplusplus) #define inline __inline #endif /* * Conversion macros for embedded constants: * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2 */ #if defined(MBEDTLS_HAVE_INT32) #define BYTES_TO_T_UINT_4( a, b, c, d ) \ ( (mbedtls_mpi_uint) (a) << 0 ) | \ ( (mbedtls_mpi_uint) (b) << 8 ) | \ ( (mbedtls_mpi_uint) (c) << 16 ) | \ ( (mbedtls_mpi_uint) (d) << 24 ) #define BYTES_TO_T_UINT_2( a, b ) \ BYTES_TO_T_UINT_4( a, b, 0, 0 ) #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \ BYTES_TO_T_UINT_4( a, b, c, d ), \ BYTES_TO_T_UINT_4( e, f, g, h ) #else /* 64-bits */ #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \ ( (mbedtls_mpi_uint) (a) << 0 ) | \ ( (mbedtls_mpi_uint) (b) << 8 ) | \ ( (mbedtls_mpi_uint) (c) << 16 ) | \ ( (mbedtls_mpi_uint) (d) << 24 ) | \ ( (mbedtls_mpi_uint) (e) << 32 ) | \ ( (mbedtls_mpi_uint) (f) << 40 ) | \ ( (mbedtls_mpi_uint) (g) << 48 ) | \ ( (mbedtls_mpi_uint) (h) << 56 ) #define BYTES_TO_T_UINT_4( a, b, c, d ) \ BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 ) #define BYTES_TO_T_UINT_2( a, b ) \ BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 ) #endif /* bits in mbedtls_mpi_uint */ #define ECP_MPI_INIT(s, n, p) {s, (n), (mbedtls_mpi_uint *)(p)} #define ECP_MPI_INIT_ARRAY(x) \ ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x) /* * Note: the constants are in little-endian order * to be directly usable in MPIs */ /* * Domain parameters for secp192r1 */ #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) static const mbedtls_mpi_uint secp192r1_p[] = { BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), }; static const mbedtls_mpi_uint secp192r1_b[] = { BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ), BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ), BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ), }; static const mbedtls_mpi_uint secp192r1_gx[] = { BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ), BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ), BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ), }; static const mbedtls_mpi_uint secp192r1_gy[] = { BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ), BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ), BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ), }; static const mbedtls_mpi_uint secp192r1_n[] = { BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ), BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), }; #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */ /* * Domain parameters for secp224r1 */ #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) static const mbedtls_mpi_uint secp224r1_p[] = { BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ), BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ), }; static const mbedtls_mpi_uint secp224r1_b[] = { BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ), BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ), BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ), BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ), }; static const mbedtls_mpi_uint secp224r1_gx[] = { BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ), BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ), BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ), BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ), }; static const mbedtls_mpi_uint secp224r1_gy[] = { BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ), BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ), BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ), BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ), }; static const mbedtls_mpi_uint secp224r1_n[] = { BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ), BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ), }; #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */ /* * Domain parameters for secp256r1 */ #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) static const mbedtls_mpi_uint secp256r1_p[] = { BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ), BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ), BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ), }; static const mbedtls_mpi_uint secp256r1_b[] = { BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ), BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ), BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ), BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ), }; static const mbedtls_mpi_uint secp256r1_gx[] = { BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ), BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ), BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ), BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ), }; static const mbedtls_mpi_uint secp256r1_gy[] = { BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ), BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ), BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ), BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ), }; static const mbedtls_mpi_uint secp256r1_n[] = { BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ), BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ), }; #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */ /* * Domain parameters for secp384r1 */ #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) static const mbedtls_mpi_uint secp384r1_p[] = { BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ), BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), }; static const mbedtls_mpi_uint secp384r1_b[] = { BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ), BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ), BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ), BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ), BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ), BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ), }; static const mbedtls_mpi_uint secp384r1_gx[] = { BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ), BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ), BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ), BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ), BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ), BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ), }; static const mbedtls_mpi_uint secp384r1_gy[] = { BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ), BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ), BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ), BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ), BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ), BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ), }; static const mbedtls_mpi_uint secp384r1_n[] = { BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ), BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ), BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), }; #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */ /* * Domain parameters for secp521r1 */ #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) static const mbedtls_mpi_uint secp521r1_p[] = { BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_2( 0xFF, 0x01 ), }; static const mbedtls_mpi_uint secp521r1_b[] = { BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ), BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ), BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ), BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ), BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ), BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ), BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ), BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ), BYTES_TO_T_UINT_2( 0x51, 0x00 ), }; static const mbedtls_mpi_uint secp521r1_gx[] = { BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ), BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ), BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ), BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ), BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ), BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ), BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ), BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ), BYTES_TO_T_UINT_2( 0xC6, 0x00 ), }; static const mbedtls_mpi_uint secp521r1_gy[] = { BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ), BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ), BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ), BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ), BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ), BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ), BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ), BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ), BYTES_TO_T_UINT_2( 0x18, 0x01 ), }; static const mbedtls_mpi_uint secp521r1_n[] = { BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ), BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ), BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ), BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ), BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_2( 0xFF, 0x01 ), }; #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) static const mbedtls_mpi_uint secp192k1_p[] = { BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), }; static const mbedtls_mpi_uint secp192k1_a[] = { BYTES_TO_T_UINT_2( 0x00, 0x00 ), }; static const mbedtls_mpi_uint secp192k1_b[] = { BYTES_TO_T_UINT_2( 0x03, 0x00 ), }; static const mbedtls_mpi_uint secp192k1_gx[] = { BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ), BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ), BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ), }; static const mbedtls_mpi_uint secp192k1_gy[] = { BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ), BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ), BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ), }; static const mbedtls_mpi_uint secp192k1_n[] = { BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ), BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), }; #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) static const mbedtls_mpi_uint secp224k1_p[] = { BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ), }; static const mbedtls_mpi_uint secp224k1_a[] = { BYTES_TO_T_UINT_2( 0x00, 0x00 ), }; static const mbedtls_mpi_uint secp224k1_b[] = { BYTES_TO_T_UINT_2( 0x05, 0x00 ), }; static const mbedtls_mpi_uint secp224k1_gx[] = { BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ), BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ), BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ), BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ), }; static const mbedtls_mpi_uint secp224k1_gy[] = { BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ), BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ), BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ), BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ), }; static const mbedtls_mpi_uint secp224k1_n[] = { BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ), BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ), BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ), BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ), }; #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) static const mbedtls_mpi_uint secp256k1_p[] = { BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), }; static const mbedtls_mpi_uint secp256k1_a[] = { BYTES_TO_T_UINT_2( 0x00, 0x00 ), }; static const mbedtls_mpi_uint secp256k1_b[] = { BYTES_TO_T_UINT_2( 0x07, 0x00 ), }; static const mbedtls_mpi_uint secp256k1_gx[] = { BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ), BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ), BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ), BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ), }; static const mbedtls_mpi_uint secp256k1_gy[] = { BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ), BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ), BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ), BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ), }; static const mbedtls_mpi_uint secp256k1_n[] = { BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ), BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ), BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ), }; #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */ /* * Domain parameters for brainpoolP256r1 (RFC 5639 3.4) */ #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) static const mbedtls_mpi_uint brainpoolP256r1_p[] = { BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ), BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ), BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ), BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ), }; static const mbedtls_mpi_uint brainpoolP256r1_a[] = { BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ), BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ), BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ), BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ), }; static const mbedtls_mpi_uint brainpoolP256r1_b[] = { BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ), BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ), BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ), BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ), }; static const mbedtls_mpi_uint brainpoolP256r1_gx[] = { BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ), BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ), BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ), BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ), }; static const mbedtls_mpi_uint brainpoolP256r1_gy[] = { BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ), BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ), BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ), BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ), }; static const mbedtls_mpi_uint brainpoolP256r1_n[] = { BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ), BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ), BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ), BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ), }; #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */ /* * Domain parameters for brainpoolP384r1 (RFC 5639 3.6) */ #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) static const mbedtls_mpi_uint brainpoolP384r1_p[] = { BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ), BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ), BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ), BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ), BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ), BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ), }; static const mbedtls_mpi_uint brainpoolP384r1_a[] = { BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ), BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ), BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ), BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ), BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ), BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ), }; static const mbedtls_mpi_uint brainpoolP384r1_b[] = { BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ), BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ), BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ), BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ), BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ), BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ), }; static const mbedtls_mpi_uint brainpoolP384r1_gx[] = { BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ), BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ), BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ), BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ), BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ), BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ), }; static const mbedtls_mpi_uint brainpoolP384r1_gy[] = { BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ), BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ), BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ), BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ), BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ), BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ), }; static const mbedtls_mpi_uint brainpoolP384r1_n[] = { BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ), BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ), BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ), BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ), BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ), BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ), }; #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */ /* * Domain parameters for brainpoolP512r1 (RFC 5639 3.7) */ #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) static const mbedtls_mpi_uint brainpoolP512r1_p[] = { BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ), BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ), BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ), BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ), BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ), BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ), BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ), BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ), }; static const mbedtls_mpi_uint brainpoolP512r1_a[] = { BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ), BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ), BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ), BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ), BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ), BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ), BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ), BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ), }; static const mbedtls_mpi_uint brainpoolP512r1_b[] = { BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ), BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ), BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ), BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ), BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ), BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ), BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ), BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ), }; static const mbedtls_mpi_uint brainpoolP512r1_gx[] = { BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ), BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ), BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ), BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ), BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ), BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ), BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ), BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ), }; static const mbedtls_mpi_uint brainpoolP512r1_gy[] = { BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ), BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ), BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ), BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ), BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ), BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ), BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ), BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ), }; static const mbedtls_mpi_uint brainpoolP512r1_n[] = { BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ), BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ), BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ), BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ), BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ), BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ), BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ), BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ), }; #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \ defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \ defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \ defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || \ defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) || \ defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) || \ defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) || \ defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) || \ defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \ defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \ defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) /* For these curves, we build the group parameters dynamically. */ #define ECP_LOAD_GROUP #endif #if defined(ECP_LOAD_GROUP) /* * Create an MPI from embedded constants * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint) */ static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len ) { X->s = 1; X->n = len / sizeof( mbedtls_mpi_uint ); X->p = (mbedtls_mpi_uint *) p; } /* * Set an MPI to static value 1 */ static inline void ecp_mpi_set1( mbedtls_mpi *X ) { static mbedtls_mpi_uint one[] = { 1 }; X->s = 1; X->n = 1; X->p = one; } /* * Make group available from embedded constants */ static int ecp_group_load( mbedtls_ecp_group *grp, const mbedtls_mpi_uint *p, size_t plen, const mbedtls_mpi_uint *a, size_t alen, const mbedtls_mpi_uint *b, size_t blen, const mbedtls_mpi_uint *gx, size_t gxlen, const mbedtls_mpi_uint *gy, size_t gylen, const mbedtls_mpi_uint *n, size_t nlen) { ecp_mpi_load( &grp->P, p, plen ); if( a != NULL ) ecp_mpi_load( &grp->A, a, alen ); ecp_mpi_load( &grp->B, b, blen ); ecp_mpi_load( &grp->N, n, nlen ); ecp_mpi_load( &grp->G.X, gx, gxlen ); ecp_mpi_load( &grp->G.Y, gy, gylen ); ecp_mpi_set1( &grp->G.Z ); grp->pbits = mbedtls_mpi_bitlen( &grp->P ); grp->nbits = mbedtls_mpi_bitlen( &grp->N ); grp->h = 1; return( 0 ); } #endif /* ECP_LOAD_GROUP */ #if defined(MBEDTLS_ECP_NIST_OPTIM) /* Forward declarations */ #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) static int ecp_mod_p192( mbedtls_mpi * ); #endif #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) static int ecp_mod_p224( mbedtls_mpi * ); #endif #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) static int ecp_mod_p256( mbedtls_mpi * ); #endif #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) static int ecp_mod_p384( mbedtls_mpi * ); #endif #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) static int ecp_mod_p521( mbedtls_mpi * ); #endif #define NIST_MODP( P ) grp->modp = ecp_mod_ ## P; #else #define NIST_MODP( P ) #endif /* MBEDTLS_ECP_NIST_OPTIM */ /* Additional forward declarations */ #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) static int ecp_mod_p255( mbedtls_mpi * ); #endif #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) static int ecp_mod_p448( mbedtls_mpi * ); #endif #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) static int ecp_mod_p192k1( mbedtls_mpi * ); #endif #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) static int ecp_mod_p224k1( mbedtls_mpi * ); #endif #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) static int ecp_mod_p256k1( mbedtls_mpi * ); #endif #if defined(ECP_LOAD_GROUP) #define LOAD_GROUP_A( G ) ecp_group_load( grp, \ G ## _p, sizeof( G ## _p ), \ G ## _a, sizeof( G ## _a ), \ G ## _b, sizeof( G ## _b ), \ G ## _gx, sizeof( G ## _gx ), \ G ## _gy, sizeof( G ## _gy ), \ G ## _n, sizeof( G ## _n ) ) #define LOAD_GROUP( G ) ecp_group_load( grp, \ G ## _p, sizeof( G ## _p ), \ NULL, 0, \ G ## _b, sizeof( G ## _b ), \ G ## _gx, sizeof( G ## _gx ), \ G ## _gy, sizeof( G ## _gy ), \ G ## _n, sizeof( G ## _n ) ) #endif /* ECP_LOAD_GROUP */ #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) /* Constants used by ecp_use_curve25519() */ static const unsigned char curve25519_a24[] = { 0x01, 0xDB, 0x42 }; static const unsigned char curve25519_part_of_n[] = { 0x14, 0xDE, 0xF9, 0xDE, 0xA2, 0xF7, 0x9C, 0xD6, 0x58, 0x12, 0x63, 0x1A, 0x5C, 0xF5, 0xD3, 0xED, }; /* * Specialized function for creating the Curve25519 group */ static int ecp_use_curve25519( mbedtls_ecp_group *grp ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; /* Actually ( A + 2 ) / 4 */ MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &grp->A, curve25519_a24, sizeof( curve25519_a24 ) ) ); /* P = 2^255 - 19 */ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) ); grp->pbits = mbedtls_mpi_bitlen( &grp->P ); /* N = 2^252 + 27742317777372353535851937790883648493 */ MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &grp->N, curve25519_part_of_n, sizeof( curve25519_part_of_n ) ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 252, 1 ) ); /* Y intentionally not set, since we use x/z coordinates. * This is used as a marker to identify Montgomery curves! */ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) ); mbedtls_mpi_free( &grp->G.Y ); /* Actually, the required msb for private keys */ grp->nbits = 254; cleanup: if( ret != 0 ) mbedtls_ecp_group_free( grp ); return( ret ); } #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */ #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) /* Constants used by ecp_use_curve448() */ static const unsigned char curve448_a24[] = { 0x98, 0xAA }; static const unsigned char curve448_part_of_n[] = { 0x83, 0x35, 0xDC, 0x16, 0x3B, 0xB1, 0x24, 0xB6, 0x51, 0x29, 0xC9, 0x6F, 0xDE, 0x93, 0x3D, 0x8D, 0x72, 0x3A, 0x70, 0xAA, 0xDC, 0x87, 0x3D, 0x6D, 0x54, 0xA7, 0xBB, 0x0D, }; /* * Specialized function for creating the Curve448 group */ static int ecp_use_curve448( mbedtls_ecp_group *grp ) { mbedtls_mpi Ns; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_mpi_init( &Ns ); /* Actually ( A + 2 ) / 4 */ MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &grp->A, curve448_a24, sizeof( curve448_a24 ) ) ); /* P = 2^448 - 2^224 - 1 */ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) ); grp->pbits = mbedtls_mpi_bitlen( &grp->P ); /* Y intentionally not set, since we use x/z coordinates. * This is used as a marker to identify Montgomery curves! */ MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 5 ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) ); mbedtls_mpi_free( &grp->G.Y ); /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */ MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 446, 1 ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &Ns, curve448_part_of_n, sizeof( curve448_part_of_n ) ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &grp->N, &grp->N, &Ns ) ); /* Actually, the required msb for private keys */ grp->nbits = 447; cleanup: mbedtls_mpi_free( &Ns ); if( ret != 0 ) mbedtls_ecp_group_free( grp ); return( ret ); } #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */ /* * Set a group using well-known domain parameters */ int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id ) { ECP_VALIDATE_RET( grp != NULL ); mbedtls_ecp_group_free( grp ); grp->id = id; switch( id ) { #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) case MBEDTLS_ECP_DP_SECP192R1: NIST_MODP( p192 ); return( LOAD_GROUP( secp192r1 ) ); #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) case MBEDTLS_ECP_DP_SECP224R1: NIST_MODP( p224 ); return( LOAD_GROUP( secp224r1 ) ); #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) case MBEDTLS_ECP_DP_SECP256R1: NIST_MODP( p256 ); return( LOAD_GROUP( secp256r1 ) ); #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) case MBEDTLS_ECP_DP_SECP384R1: NIST_MODP( p384 ); return( LOAD_GROUP( secp384r1 ) ); #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) case MBEDTLS_ECP_DP_SECP521R1: NIST_MODP( p521 ); return( LOAD_GROUP( secp521r1 ) ); #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) case MBEDTLS_ECP_DP_SECP192K1: grp->modp = ecp_mod_p192k1; return( LOAD_GROUP_A( secp192k1 ) ); #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) case MBEDTLS_ECP_DP_SECP224K1: grp->modp = ecp_mod_p224k1; return( LOAD_GROUP_A( secp224k1 ) ); #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) case MBEDTLS_ECP_DP_SECP256K1: grp->modp = ecp_mod_p256k1; return( LOAD_GROUP_A( secp256k1 ) ); #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */ #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) case MBEDTLS_ECP_DP_BP256R1: return( LOAD_GROUP_A( brainpoolP256r1 ) ); #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */ #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) case MBEDTLS_ECP_DP_BP384R1: return( LOAD_GROUP_A( brainpoolP384r1 ) ); #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */ #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) case MBEDTLS_ECP_DP_BP512R1: return( LOAD_GROUP_A( brainpoolP512r1 ) ); #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */ #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) case MBEDTLS_ECP_DP_CURVE25519: grp->modp = ecp_mod_p255; return( ecp_use_curve25519( grp ) ); #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */ #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) case MBEDTLS_ECP_DP_CURVE448: grp->modp = ecp_mod_p448; return( ecp_use_curve448( grp ) ); #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */ default: grp->id = MBEDTLS_ECP_DP_NONE; return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE ); } } #if defined(MBEDTLS_ECP_NIST_OPTIM) /* * Fast reduction modulo the primes used by the NIST curves. * * These functions are critical for speed, but not needed for correct * operations. So, we make the choice to heavily rely on the internals of our * bignum library, which creates a tight coupling between these functions and * our MPI implementation. However, the coupling between the ECP module and * MPI remains loose, since these functions can be deactivated at will. */ #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) /* * Compared to the way things are presented in FIPS 186-3 D.2, * we proceed in columns, from right (least significant chunk) to left, * adding chunks to N in place, and keeping a carry for the next chunk. * This avoids moving things around in memory, and uselessly adding zeros, * compared to the more straightforward, line-oriented approach. * * For this prime we need to handle data in chunks of 64 bits. * Since this is always a multiple of our basic mbedtls_mpi_uint, we can * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it. */ /* Add 64-bit chunks (dst += src) and update carry */ static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry ) { unsigned char i; mbedtls_mpi_uint c = 0; for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ ) { *dst += c; c = ( *dst < c ); *dst += *src; c += ( *dst < *src ); } *carry += c; } /* Add carry to a 64-bit chunk and update carry */ static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry ) { unsigned char i; for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ ) { *dst += *carry; *carry = ( *dst < *carry ); } } #define WIDTH 8 / sizeof( mbedtls_mpi_uint ) #define A( i ) N->p + (i) * WIDTH #define ADD( i ) add64( p, A( i ), &c ) #define NEXT p += WIDTH; carry64( p, &c ) #define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0 /* * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1) */ static int ecp_mod_p192( mbedtls_mpi *N ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_mpi_uint c = 0; mbedtls_mpi_uint *p, *end; /* Make sure we have enough blocks so that A(5) is legal */ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) ); p = N->p; end = p + N->n; ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5 ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5 ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5 cleanup: return( ret ); } #undef WIDTH #undef A #undef ADD #undef NEXT #undef LAST #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \ defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \ defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) /* * The reader is advised to first understand ecp_mod_p192() since the same * general structure is used here, but with additional complications: * (1) chunks of 32 bits, and (2) subtractions. */ /* * For these primes, we need to handle data in chunks of 32 bits. * This makes it more complicated if we use 64 bits limbs in MPI, * which prevents us from using a uniform access method as for p192. * * So, we define a mini abstraction layer to access 32 bit chunks, * load them in 'cur' for work, and store them back from 'cur' when done. * * While at it, also define the size of N in terms of 32-bit chunks. */ #define LOAD32 cur = A( i ); #if defined(MBEDTLS_HAVE_INT32) /* 32 bit */ #define MAX32 N->n #define A( j ) N->p[j] #define STORE32 N->p[i] = cur; #else /* 64-bit */ #define MAX32 N->n * 2 #define A( j ) (j) % 2 ? (uint32_t)( N->p[(j)/2] >> 32 ) : \ (uint32_t)( N->p[(j)/2] ) #define STORE32 \ if( i % 2 ) { \ N->p[i/2] &= 0x00000000FFFFFFFF; \ N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32; \ } else { \ N->p[i/2] &= 0xFFFFFFFF00000000; \ N->p[i/2] |= (mbedtls_mpi_uint) cur; \ } #endif /* sizeof( mbedtls_mpi_uint ) */ /* * Helpers for addition and subtraction of chunks, with signed carry. */ static inline void add32( uint32_t *dst, uint32_t src, signed char *carry ) { *dst += src; *carry += ( *dst < src ); } static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry ) { *carry -= ( *dst < src ); *dst -= src; } #define ADD( j ) add32( &cur, A( j ), &c ); #define SUB( j ) sub32( &cur, A( j ), &c ); #define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */ #define biL (ciL << 3) /* bits in limb */ /* * Helpers for the main 'loop' */ #define INIT( b ) \ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; \ signed char c = 0, cc; \ uint32_t cur; \ size_t i = 0, bits = (b); \ /* N is the size of the product of two b-bit numbers, plus one */ \ /* limb for fix_negative */ \ MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, ( b ) * 2 / biL + 1 ) ); \ LOAD32; #define NEXT \ STORE32; i++; LOAD32; \ cc = c; c = 0; \ if( cc < 0 ) \ sub32( &cur, -cc, &c ); \ else \ add32( &cur, cc, &c ); \ #define LAST \ STORE32; i++; \ cur = c > 0 ? c : 0; STORE32; \ cur = 0; while( ++i < MAX32 ) { STORE32; } \ if( c < 0 ) mbedtls_ecp_fix_negative( N, c, bits ); /* * If the result is negative, we get it in the form * c * 2^bits + N, with c negative and N positive shorter than 'bits' */ MBEDTLS_STATIC_TESTABLE void mbedtls_ecp_fix_negative( mbedtls_mpi *N, signed char c, size_t bits ) { size_t i; /* Set N := 2^bits - 1 - N. We know that 0 <= N < 2^bits, so * set the absolute value to 0xfff...fff - N. There is no carry * since we're subtracting from all-bits-one. */ for( i = 0; i <= bits / 8 / sizeof( mbedtls_mpi_uint ); i++ ) { N->p[i] = ~(mbedtls_mpi_uint)0 - N->p[i]; } /* Add 1, taking care of the carry. */ i = 0; do ++N->p[i]; while( N->p[i++] == 0 && i <= bits / 8 / sizeof( mbedtls_mpi_uint ) ); /* Invert the sign. * Now N = N0 - 2^bits where N0 is the initial value of N. */ N->s = -1; /* Add |c| * 2^bits to the absolute value. Since c and N are * negative, this adds c * 2^bits. */ mbedtls_mpi_uint msw = (mbedtls_mpi_uint) -c; #if defined(MBEDTLS_HAVE_INT64) if( bits == 224 ) msw <<= 32; #endif N->p[bits / 8 / sizeof( mbedtls_mpi_uint)] += msw; } #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) /* * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2) */ static int ecp_mod_p224( mbedtls_mpi *N ) { INIT( 224 ); SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11 SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12 SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13 SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11 SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12 SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13 SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10 cleanup: return( ret ); } #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) /* * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3) */ static int ecp_mod_p256( mbedtls_mpi *N ) { INIT( 256 ); ADD( 8 ); ADD( 9 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0 ADD( 9 ); ADD( 10 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1 ADD( 10 ); ADD( 11 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2 ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 ); SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3 ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 ); SUB( 9 ); SUB( 10 ); NEXT; // A4 ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 ); SUB( 10 ); SUB( 11 ); NEXT; // A5 ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 ); SUB( 8 ); SUB( 9 ); NEXT; // A6 ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 ); SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7 cleanup: return( ret ); } #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) /* * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4) */ static int ecp_mod_p384( mbedtls_mpi *N ) { INIT( 384 ); ADD( 12 ); ADD( 21 ); ADD( 20 ); SUB( 23 ); NEXT; // A0 ADD( 13 ); ADD( 22 ); ADD( 23 ); SUB( 12 ); SUB( 20 ); NEXT; // A2 ADD( 14 ); ADD( 23 ); SUB( 13 ); SUB( 21 ); NEXT; // A2 ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 ); SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3 ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 ); SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4 ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 ); SUB( 16 ); NEXT; // A5 ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 ); SUB( 17 ); NEXT; // A6 ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 ); SUB( 18 ); NEXT; // A7 ADD( 20 ); ADD( 17 ); ADD( 16 ); SUB( 19 ); NEXT; // A8 ADD( 21 ); ADD( 18 ); ADD( 17 ); SUB( 20 ); NEXT; // A9 ADD( 22 ); ADD( 19 ); ADD( 18 ); SUB( 21 ); NEXT; // A10 ADD( 23 ); ADD( 20 ); ADD( 19 ); SUB( 22 ); LAST; // A11 cleanup: return( ret ); } #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */ #undef A #undef LOAD32 #undef STORE32 #undef MAX32 #undef INIT #undef NEXT #undef LAST #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED || MBEDTLS_ECP_DP_SECP256R1_ENABLED || MBEDTLS_ECP_DP_SECP384R1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) /* * Here we have an actual Mersenne prime, so things are more straightforward. * However, chunks are aligned on a 'weird' boundary (521 bits). */ /* Size of p521 in terms of mbedtls_mpi_uint */ #define P521_WIDTH ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 ) /* Bits to keep in the most significant mbedtls_mpi_uint */ #define P521_MASK 0x01FF /* * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5) * Write N as A1 + 2^521 A0, return A0 + A1 */ static int ecp_mod_p521( mbedtls_mpi *N ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t i; mbedtls_mpi M; mbedtls_mpi_uint Mp[P521_WIDTH + 1]; /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits: * we need to hold bits 513 to 1056, which is 34 limbs, that is * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */ if( N->n < P521_WIDTH ) return( 0 ); /* M = A1 */ M.s = 1; M.n = N->n - ( P521_WIDTH - 1 ); if( M.n > P521_WIDTH + 1 ) M.n = P521_WIDTH + 1; M.p = Mp; memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) ); /* N = A0 */ N->p[P521_WIDTH - 1] &= P521_MASK; for( i = P521_WIDTH; i < N->n; i++ ) N->p[i] = 0; /* N = A0 + A1 */ MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) ); cleanup: return( ret ); } #undef P521_WIDTH #undef P521_MASK #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */ #endif /* MBEDTLS_ECP_NIST_OPTIM */ #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) /* Size of p255 in terms of mbedtls_mpi_uint */ #define P255_WIDTH ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 ) /* * Fast quasi-reduction modulo p255 = 2^255 - 19 * Write N as A0 + 2^255 A1, return A0 + 19 * A1 */ static int ecp_mod_p255( mbedtls_mpi *N ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t i; mbedtls_mpi M; mbedtls_mpi_uint Mp[P255_WIDTH + 2]; if( N->n < P255_WIDTH ) return( 0 ); /* M = A1 */ M.s = 1; M.n = N->n - ( P255_WIDTH - 1 ); if( M.n > P255_WIDTH + 1 ) return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); M.p = Mp; memset( Mp, 0, sizeof Mp ); memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) ); M.n++; /* Make room for multiplication by 19 */ /* N = A0 */ MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) ); for( i = P255_WIDTH; i < N->n; i++ ) N->p[i] = 0; /* N = A0 + 19 * A1 */ MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) ); cleanup: return( ret ); } #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */ #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) /* Size of p448 in terms of mbedtls_mpi_uint */ #define P448_WIDTH ( 448 / 8 / sizeof( mbedtls_mpi_uint ) ) /* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */ #define DIV_ROUND_UP( X, Y ) ( ( ( X ) + ( Y ) - 1 ) / ( Y ) ) #define P224_WIDTH_MIN ( 28 / sizeof( mbedtls_mpi_uint ) ) #define P224_WIDTH_MAX DIV_ROUND_UP( 28, sizeof( mbedtls_mpi_uint ) ) #define P224_UNUSED_BITS ( ( P224_WIDTH_MAX * sizeof( mbedtls_mpi_uint ) * 8 ) - 224 ) /* * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1 * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return * A0 + A1 + B1 + (B0 + B1) * 2^224. This is different to the reference * implementation of Curve448, which uses its own special 56-bit limbs rather * than a generic bignum library. We could squeeze some extra speed out on * 32-bit machines by splitting N up into 32-bit limbs and doing the * arithmetic using the limbs directly as we do for the NIST primes above, * but for 64-bit targets it should use half the number of operations if we do * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds. */ static int ecp_mod_p448( mbedtls_mpi *N ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t i; mbedtls_mpi M, Q; mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH]; if( N->n <= P448_WIDTH ) return( 0 ); /* M = A1 */ M.s = 1; M.n = N->n - ( P448_WIDTH ); if( M.n > P448_WIDTH ) /* Shouldn't be called with N larger than 2^896! */ return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); M.p = Mp; memset( Mp, 0, sizeof( Mp ) ); memcpy( Mp, N->p + P448_WIDTH, M.n * sizeof( mbedtls_mpi_uint ) ); /* N = A0 */ for( i = P448_WIDTH; i < N->n; i++ ) N->p[i] = 0; /* N += A1 */ MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) ); /* Q = B1, N += B1 */ Q = M; Q.p = Qp; memcpy( Qp, Mp, sizeof( Qp ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Q, 224 ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &Q ) ); /* M = (B0 + B1) * 2^224, N += M */ if( sizeof( mbedtls_mpi_uint ) > 4 ) Mp[P224_WIDTH_MIN] &= ( (mbedtls_mpi_uint)-1 ) >> ( P224_UNUSED_BITS ); for( i = P224_WIDTH_MAX; i < M.n; ++i ) Mp[i] = 0; MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &Q ) ); M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */ MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &M, 224 ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) ); cleanup: return( ret ); } #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \ defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \ defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) /* * Fast quasi-reduction modulo P = 2^s - R, * with R about 33 bits, used by the Koblitz curves. * * Write N as A0 + 2^224 A1, return A0 + R * A1. * Actually do two passes, since R is big. */ #define P_KOBLITZ_MAX ( 256 / 8 / sizeof( mbedtls_mpi_uint ) ) // Max limbs in P #define P_KOBLITZ_R ( 8 / sizeof( mbedtls_mpi_uint ) ) // Limbs in R static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs, size_t adjust, size_t shift, mbedtls_mpi_uint mask ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t i; mbedtls_mpi M, R; mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1]; if( N->n < p_limbs ) return( 0 ); /* Init R */ R.s = 1; R.p = Rp; R.n = P_KOBLITZ_R; /* Common setup for M */ M.s = 1; M.p = Mp; /* M = A1 */ M.n = N->n - ( p_limbs - adjust ); if( M.n > p_limbs + adjust ) M.n = p_limbs + adjust; memset( Mp, 0, sizeof Mp ); memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) ); if( shift != 0 ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) ); M.n += R.n; /* Make room for multiplication by R */ /* N = A0 */ if( mask != 0 ) N->p[p_limbs - 1] &= mask; for( i = p_limbs; i < N->n; i++ ) N->p[i] = 0; /* N = A0 + R * A1 */ MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) ); /* Second pass */ /* M = A1 */ M.n = N->n - ( p_limbs - adjust ); if( M.n > p_limbs + adjust ) M.n = p_limbs + adjust; memset( Mp, 0, sizeof Mp ); memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) ); if( shift != 0 ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) ); M.n += R.n; /* Make room for multiplication by R */ /* N = A0 */ if( mask != 0 ) N->p[p_limbs - 1] &= mask; for( i = p_limbs; i < N->n; i++ ) N->p[i] = 0; /* N = A0 + R * A1 */ MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) ); cleanup: return( ret ); } #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) || MBEDTLS_ECP_DP_SECP224K1_ENABLED) || MBEDTLS_ECP_DP_SECP256K1_ENABLED) */ #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) /* * Fast quasi-reduction modulo p192k1 = 2^192 - R, * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119 */ static int ecp_mod_p192k1( mbedtls_mpi *N ) { static mbedtls_mpi_uint Rp[] = { BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) }; return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) ); } #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) /* * Fast quasi-reduction modulo p224k1 = 2^224 - R, * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93 */ static int ecp_mod_p224k1( mbedtls_mpi *N ) { static mbedtls_mpi_uint Rp[] = { BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) }; #if defined(MBEDTLS_HAVE_INT64) return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) ); #else return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) ); #endif } #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */ #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) /* * Fast quasi-reduction modulo p256k1 = 2^256 - R, * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1 */ static int ecp_mod_p256k1( mbedtls_mpi *N ) { static mbedtls_mpi_uint Rp[] = { BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) }; return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) ); } #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */ #endif /* !MBEDTLS_ECP_ALT */ #endif /* MBEDTLS_ECP_C */