/* * NIST SP800-38B compliant CMAC implementation * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of mbed TLS (https://tls.mbed.org) */ /* * Definition of CMAC: * http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf * RFC 4493 "The AES-CMAC Algorithm" */ #if !defined(MBEDTLS_CONFIG_FILE) #include "mbedtls/config.h" #else #include MBEDTLS_CONFIG_FILE #endif #if defined(MBEDTLS_CMAC_C) #include "mbedtls/cmac.h" #include #if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_AES_C) #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define mbedtls_printf printf #endif /* MBEDTLS_PLATFORM_C */ #endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */ /* Implementation that should never be optimized out by the compiler */ static void mbedtls_zeroize( void *v, size_t n ) { volatile unsigned char *p = v; while( n-- ) *p++ = 0; } /* * Initialize context */ void mbedtls_cmac_init( mbedtls_cmac_context *ctx ) { memset( ctx, 0, sizeof( mbedtls_cmac_context ) ); } /* * Multiplication by u in the Galois field of GF(2^n) * * As explained in the paper, this can computed: * If MSB(p) = 0, then p = (p << 1) * If MSB(p) = 1, then p = (p << 1) ^ R_n * with R_64 = 0x1B and R_128 = 0x87 * * Input and output MUST not point to the same buffer * Block size must be 8 byes or 16 bytes. */ static int cmac_multiply_by_u( unsigned char *output, const unsigned char *input, size_t blocksize) { const unsigned char R_128 = 0x87; const unsigned char R_64 = 0x1B; unsigned char R_n, mask; unsigned char overflow = 0x00; int i, starting_index; starting_index = blocksize -1; if(blocksize == 16){ R_n = R_128; } else if(blocksize == 8) { R_n = R_64; } else { return MBEDTLS_ERR_CMAC_BAD_INPUT; } for( i = starting_index; i >= 0; i-- ) { output[i] = input[i] << 1 | overflow; overflow = input[i] >> 7; } /* mask = ( input[0] >> 7 ) ? 0xff : 0x00 * using bit operations to avoid branches */ /* MSVC has a warning about unary minus on unsigned, but this is * well-defined and precisely what we want to do here */ #if defined(_MSC_VER) #pragma warning( push ) #pragma warning( disable : 4146 ) #endif mask = - ( input[0] >> 7 ); #if defined(_MSC_VER) #pragma warning( pop ) #endif output[starting_index] ^= R_n & mask; return 0; } /* * Generate subkeys */ static int cmac_generate_subkeys( mbedtls_cmac_context *ctx ) { int ret, keybytes; unsigned char *L; size_t olen, block_size; ret = 0; block_size = ctx->cipher_ctx.cipher_info->block_size; L = mbedtls_calloc(block_size, sizeof(unsigned char)); /* Calculate Ek(0) */ memset( L, 0, block_size ); if( ( ret = mbedtls_cipher_update( &ctx->cipher_ctx, L, block_size, L, &olen ) ) != 0 ) { goto exit; } /* * Generate K1 and K2 */ if( ( ret = cmac_multiply_by_u( ctx->K1, L , block_size) ) != 0 ) goto exit; if( ( cmac_multiply_by_u( ctx->K2, ctx->K1 , block_size) ) != 0 ) goto exit; exit: mbedtls_zeroize( L, sizeof( L ) ); free(L); return ret; } /* * Set key and prepare context for use */ int mbedtls_cmac_setkey( mbedtls_cmac_context *ctx, mbedtls_cipher_id_t cipher, const unsigned char *key, unsigned int keybits ) { int ret, blocksize; const mbedtls_cipher_info_t *cipher_info; cipher_info = mbedtls_cipher_info_from_values( cipher, keybits, MBEDTLS_MODE_ECB ); if( cipher_info == NULL ) return( MBEDTLS_ERR_CMAC_BAD_INPUT ); ctx->K1 = mbedtls_calloc( cipher_info->block_size, sizeof( unsigned char ) ); ctx->K2 = mbedtls_calloc( cipher_info->block_size, sizeof( unsigned char ) ); mbedtls_cipher_free( &ctx->cipher_ctx ); if( ( ret = mbedtls_cipher_setup( &ctx->cipher_ctx, cipher_info ) ) != 0 ) return( ret ); if( ( ret = mbedtls_cipher_setkey( &ctx->cipher_ctx, key, keybits, MBEDTLS_ENCRYPT ) ) != 0 ) { return( ret ); } return( cmac_generate_subkeys( ctx ) ); } /* * Free context */ void mbedtls_cmac_free( mbedtls_cmac_context *ctx ) { int block_size; block_size = ctx->cipher_ctx.cipher_info->block_size; mbedtls_cipher_free( &ctx->cipher_ctx ); mbedtls_zeroize(ctx->K1, block_size * sizeof( unsigned char ) ); mbedtls_zeroize(ctx->K2, block_size * sizeof( unsigned char ) ); mbedtls_free( ctx->K1 ); mbedtls_free( ctx->K2 ); } /* * Create padded last block from (partial) last block. * * We can't use the padding option from the cipher layer, as it only works for * CBC and we use ECB mode, and anyway we need to XOR K1 or K2 in addition. */ static void cmac_pad( unsigned char padded_block[16], size_t padded_block_len, const unsigned char *last_block, size_t last_block_len ) { size_t j; for( j = 0; j < padded_block_len; j++ ) { if( j < last_block_len ) padded_block[j] = last_block[j]; else if( j == last_block_len ) padded_block[j] = 0x80; else padded_block[j] = 0x00; } } /* * XOR Block * Here, macro results in smaller compiled code than static inline function */ #define XOR_BLOCK( o, i1, i2 ) \ for( i = 0; i < block_size; i++ ) \ ( o )[i] = ( i1 )[i] ^ ( i2 )[i]; /* * Update the CMAC state using an input block x */ #define UPDATE_CMAC( x ) \ do { \ XOR_BLOCK( state, ( x ), state ); \ if( ( ret = mbedtls_cipher_update( &ctx->cipher_ctx, \ state, block_size, \ state, &olen ) ) != 0 ) \ return( ret ); \ } while( 0 ) /* * Generate tag on complete message */ int mbedtls_cmac_generate( mbedtls_cmac_context *ctx, const unsigned char *input, size_t in_len, unsigned char *tag, size_t tag_len ) { unsigned char *state; unsigned char *M_last; int n, i, j, ret, needs_padding; size_t olen, block_size; ret = 0; block_size = ctx->cipher_ctx.cipher_info->block_size; state = mbedtls_calloc(block_size, sizeof(unsigned char) ); M_last = mbedtls_calloc(block_size, sizeof(unsigned char) ); /* * Check in_len requirements: SP800-38B A * 4 is a worst case bottom limit */ if( tag_len < 4 || tag_len > block_size || tag_len % 2 != 0 ) return( MBEDTLS_ERR_CMAC_BAD_INPUT ); if( in_len == 0 ) needs_padding = 1; else needs_padding = in_len % block_size != 0; n = in_len / block_size + needs_padding; /* Calculate last block */ if( needs_padding ) { cmac_pad( M_last, block_size, input + block_size * ( n - 1 ), in_len % block_size ); XOR_BLOCK( M_last, M_last, ctx->K2 ); } else { /* Last block is complete block */ XOR_BLOCK( M_last, input + block_size * ( n - 1 ), ctx->K1 ); } memset( state, 0, block_size ); for( j = 0; j < n - 1; j++ ) UPDATE_CMAC( input + block_size * j ); UPDATE_CMAC( M_last ); memcpy( tag, state, tag_len ); exit: free(state); free(M_last); return( ret ); } #undef XOR_BLOCK #undef UPDATE_CMAC /* * Verify tag on complete message */ int mbedtls_cmac_verify( mbedtls_cmac_context *ctx, const unsigned char *input, size_t in_len, const unsigned char *tag, size_t tag_len ) { int ret; unsigned char *check_tag; unsigned char i; int diff; check_tag = mbedtls_calloc(ctx->cipher_ctx.cipher_info->block_size, sizeof(unsigned char) ); if( ( ret = mbedtls_cmac_generate( ctx, input, in_len, check_tag, tag_len ) ) != 0 ) { goto exit; } /* Check tag in "constant-time" */ for( diff = 0, i = 0; i < tag_len; i++ ) diff |= tag[i] ^ check_tag[i]; if( diff != 0 ) ret = MBEDTLS_ERR_CMAC_VERIFY_FAILED; goto exit; exit: free(check_tag); return ret; } /* * PRF based on CMAC with AES-128 * See RFC 4615 */ int mbedtls_aes_cmac_prf_128( const unsigned char *key, size_t key_length, const unsigned char *input, size_t in_len, unsigned char *tag ) { int ret; mbedtls_cmac_context ctx; unsigned char zero_key[16]; unsigned char int_key[16]; mbedtls_cmac_init(&ctx); if( key_length == 16 ) { /* Use key as is */ memcpy( int_key, key, 16 ); } else { mbedtls_cmac_context zero_ctx; /* Key is AES_CMAC(0, key) */ mbedtls_cmac_init( &zero_ctx ); memset( zero_key, 0, 16 ); ret = mbedtls_cmac_setkey( &zero_ctx, MBEDTLS_CIPHER_ID_AES, zero_key, 8 * sizeof zero_key ); if( ret != 0 ) goto exit; ret = mbedtls_cmac_generate( &zero_ctx, key, key_length, int_key, 16 ); if( ret != 0 ) goto exit; } ret = mbedtls_cmac_setkey( &ctx, MBEDTLS_CIPHER_ID_AES, int_key, 8 * sizeof int_key ); if( ret != 0 ) goto exit; mbedtls_zeroize( int_key, sizeof( int_key ) ); ret = mbedtls_cmac_generate( &ctx, input, in_len, tag, 16 ); exit: mbedtls_cmac_free(&ctx); return( ret ); } #ifdef MBEDTLS_SELF_TEST /* * CMAC test data from SP800-38B Appendix D.1 (corrected) * http://csrc.nist.gov/publications/nistpubs/800-38B/Updated_CMAC_Examples.pdf * * AES-CMAC-PRF-128 test data from RFC 4615 * https://tools.ietf.org/html/rfc4615#page-4 */ #define NB_CMAC_TESTS_PER_KEY 4 #define NB_PRF_TESTS 3 #define AES_BLOCK_SIZE 16 #define DES3_BLOCK_SIZE 8 #if defined(MBEDTLS_AES_C) || defined(MBEDTLS_DES_C) /* All CMAC test inputs are truncated from the same 64 byte buffer. */ static const unsigned char test_message[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 }; #endif /* defined(MBEDTLS_AES_C) || defined(MBEDTLS_DES_C) */ #ifdef MBEDTLS_AES_C /* Truncation point of message for AES CMAC tests */ static const size_t aes_message_lengths[NB_CMAC_TESTS_PER_KEY] = { 0, 16, 40, 64 }; /* AES 128 CMAC Test Data */ static const unsigned char aes_128_key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c }; static const unsigned char aes_128_subkeys[2][AES_BLOCK_SIZE] = { { 0xfb, 0xee, 0xd6, 0x18, 0x35, 0x71, 0x33, 0x66, 0x7c, 0x85, 0xe0, 0x8f, 0x72, 0x36, 0xa8, 0xde }, { 0xf7, 0xdd, 0xac, 0x30, 0x6a, 0xe2, 0x66, 0xcc, 0xf9, 0x0b, 0xc1, 0x1e, 0xe4, 0x6d, 0x51, 0x3b } }; static const unsigned char aes_128_expected_result[NB_CMAC_TESTS_PER_KEY][AES_BLOCK_SIZE] = { { 0xbb, 0x1d, 0x69, 0x29, 0xe9, 0x59, 0x37, 0x28, 0x7f, 0xa3, 0x7d, 0x12, 0x9b, 0x75, 0x67, 0x46 }, { 0x07, 0x0a, 0x16, 0xb4, 0x6b, 0x4d, 0x41, 0x44, 0xf7, 0x9b, 0xdd, 0x9d, 0xd0, 0x4a, 0x28, 0x7c }, { 0xdf, 0xa6, 0x67, 0x47, 0xde, 0x9a, 0xe6, 0x30, 0x30, 0xca, 0x32, 0x61, 0x14, 0x97, 0xc8, 0x27 }, { 0x51, 0xf0, 0xbe, 0xbf, 0x7e, 0x3b, 0x9d, 0x92, 0xfc, 0x49, 0x74, 0x17, 0x79, 0x36, 0x3c, 0xfe } }; /* AES 192 CMAC Test Data */ static const unsigned char aes_192_key[] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b }; static const unsigned char aes_192_subkeys[2][AES_BLOCK_SIZE] = { { 0x44, 0x8a, 0x5b, 0x1c, 0x93, 0x51, 0x4b, 0x27, 0x3e, 0xe6, 0x43, 0x9d, 0xd4, 0xda, 0xa2, 0x96 }, { 0x89, 0x14, 0xb6, 0x39, 0x26, 0xa2, 0x96, 0x4e, 0x7d, 0xcc, 0x87, 0x3b, 0xa9, 0xb5, 0x45, 0x2c } }; static const unsigned char aes_192_expected_result[NB_CMAC_TESTS_PER_KEY][AES_BLOCK_SIZE] = { { 0xd1, 0x7d, 0xdf, 0x46, 0xad, 0xaa, 0xcd, 0xe5, 0x31, 0xca, 0xc4, 0x83, 0xde, 0x7a, 0x93, 0x67 }, { 0x9e, 0x99, 0xa7, 0xbf, 0x31, 0xe7, 0x10, 0x90, 0x06, 0x62, 0xf6, 0x5e, 0x61, 0x7c, 0x51, 0x84 }, { 0x8a, 0x1d, 0xe5, 0xbe, 0x2e, 0xb3, 0x1a, 0xad, 0x08, 0x9a, 0x82, 0xe6, 0xee, 0x90, 0x8b, 0x0e }, { 0xa1, 0xd5, 0xdf, 0x0e, 0xed, 0x79, 0x0f, 0x79, 0x4d, 0x77, 0x58, 0x96, 0x59, 0xf3, 0x9a, 0x11 } }; /* AES 256 CMAC Test Data */ static const unsigned char aes_256_key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 }; static const unsigned char aes_256_subkeys[2][AES_BLOCK_SIZE] = { { 0xca, 0xd1, 0xed, 0x03, 0x29, 0x9e, 0xed, 0xac, 0x2e, 0x9a, 0x99, 0x80, 0x86, 0x21, 0x50, 0x2f }, { 0x95, 0xa3, 0xda, 0x06, 0x53, 0x3d, 0xdb, 0x58, 0x5d, 0x35, 0x33, 0x01, 0x0c, 0x42, 0xa0, 0xd9 } }; static const unsigned char aes_256_expected_result[NB_CMAC_TESTS_PER_KEY][AES_BLOCK_SIZE] = { { 0x02, 0x89, 0x62, 0xf6, 0x1b, 0x7b, 0xf8, 0x9e, 0xfc, 0x6b, 0x55, 0x1f, 0x46, 0x67, 0xd9, 0x83 }, { 0x28, 0xa7, 0x02, 0x3f, 0x45, 0x2e, 0x8f, 0x82, 0xbd, 0x4b, 0xf2, 0x8d, 0x8c, 0x37, 0xc3, 0x5c }, { 0xaa, 0xf3, 0xd8, 0xf1, 0xde, 0x56, 0x40, 0xc2, 0x32, 0xf5, 0xb1, 0x69, 0xb9, 0xc9, 0x11, 0xe6 }, { 0xe1, 0x99, 0x21, 0x90, 0x54, 0x9f, 0x6e, 0xd5, 0x69, 0x6a, 0x2c, 0x05, 0x6c, 0x31, 0x54, 0x10 } }; #endif /* MBEDTLS_AES_C */ #ifdef MBEDTLS_DES_C /* Truncation point of message for 3DES CMAC tests */ static const size_t des3_message_lengths[NB_CMAC_TESTS_PER_KEY] = { 0, 8, 20, 32 }; /* 3DES 2 Key CMAC Test Data */ static const unsigned char des3_2key_key[] = { 0x4c, 0xf1, 0x51, 0x34, 0xa2, 0x85, 0x0d, 0xd5, 0x8a, 0x3d, 0x10, 0xba, 0x80, 0x57, 0x0d, 0x38, 0x4c, 0xf1, 0x51, 0x34, 0xa2, 0x85, 0x0d, 0xd5 }; static const unsigned char des3_2key_subkeys[2][8] = { { 0x8e, 0xcf, 0x37, 0x3e, 0xd7, 0x1a, 0xfa, 0xef }, { 0x1d, 0x9e, 0x6e, 0x7d, 0xae, 0x35, 0xf5, 0xc5 } }; static const unsigned char T_3des_2key[NB_CMAC_TESTS_PER_KEY][DES3_BLOCK_SIZE] = { { 0xbd, 0x2e, 0xbf, 0x9a, 0x3b, 0xa0, 0x03, 0x61 }, { 0x4f, 0xf2, 0xab, 0x81, 0x3c, 0x53, 0xce, 0x83 }, { 0x62, 0xdd, 0x1b, 0x47, 0x19, 0x02, 0xbd, 0x4e }, { 0x31, 0xb1, 0xe4, 0x31, 0xda, 0xbc, 0x4e, 0xb8 } }; /* 3DES 3 Key CMAC Test Data */ static const unsigned char des3_3key_key[] = { 0x8a, 0xa8, 0x3b, 0xf8, 0xcb, 0xda, 0x10, 0x62, 0x0b, 0xc1, 0xbf, 0x19, 0xfb, 0xb6, 0xcd, 0x58, 0xbc, 0x31, 0x3d, 0x4a, 0x37, 0x1c, 0xa8, 0xb5 }; static const unsigned char des3_3key_subkeys[2][8] = { { 0x91, 0x98, 0xe9, 0xd3, 0x14, 0xe6, 0x53, 0x5f }, { 0x23, 0x31, 0xd3, 0xa6, 0x29, 0xcc, 0xa6, 0xa5 } }; static const unsigned char T_3des_3key[NB_CMAC_TESTS_PER_KEY][DES3_BLOCK_SIZE] = { { 0xb7, 0xa6, 0x88, 0xe1, 0x22, 0xff, 0xaf, 0x95 }, { 0x8e, 0x8f, 0x29, 0x31, 0x36, 0x28, 0x37, 0x97 }, { 0x74, 0x3d, 0xdb, 0xe0, 0xce, 0x2d, 0xc2, 0xed }, { 0x33, 0xe6, 0xb1, 0x09, 0x24, 0x00, 0xea, 0xe5 } }; #endif /* MBEDTLS_DES_C */ #ifdef MBEDTLS_AES_C /* AES AES-CMAC-PRF-128 Test Data */ static const unsigned char PRFK[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xed, 0xcb }; /* Sizes in bytes */ static const size_t PRFKlen[NB_PRF_TESTS] = { 18, 16, 10 }; /* PRF M */ static const unsigned char PRFM[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13 }; static const unsigned char PRFT[NB_PRF_TESTS][16] = { { 0x84, 0xa3, 0x48, 0xa4, 0xa4, 0x5d, 0x23, 0x5b, 0xab, 0xff, 0xfc, 0x0d, 0x2b, 0x4d, 0xa0, 0x9a }, { 0x98, 0x0a, 0xe8, 0x7b, 0x5f, 0x4c, 0x9c, 0x52, 0x14, 0xf5, 0xb6, 0xa8, 0x45, 0x5e, 0x4c, 0x2d }, { 0x29, 0x0d, 0x9e, 0x11, 0x2e, 0xdb, 0x09, 0xee, 0x14, 0x1f, 0xcf, 0x64, 0xc0, 0xb7, 0x2f, 0x3d } }; #endif /* MBEDTLS_AES_C */ int test_cmac_with_cipher(int verbose, const unsigned char* testname, const unsigned char* key, int keybits, const unsigned char* messages, size_t message_lengths[4], const unsigned char* subkeys, const unsigned char* expected_result, mbedtls_cipher_id_t cipher_id, int block_size) { const int num_tests = 4; mbedtls_cmac_context ctx; int i, ret; unsigned char* tag; tag = mbedtls_calloc( block_size, sizeof( unsigned char ) ); mbedtls_cmac_init( &ctx ); if( ( ret = mbedtls_cmac_setkey( &ctx, cipher_id, key, keybits ) ) != 0 ) { if( verbose != 0 ) mbedtls_printf( " CMAC: setup failed\n" ); goto exit; } if( ( ret = memcmp( ctx.K1, subkeys, block_size ) != 0 ) || ( ret = memcmp( ctx.K2, &subkeys[block_size], block_size ) != 0 ) ) { if( verbose != 0 ) mbedtls_printf( " CMAC: subkey generation failed\n" ); goto exit; } for( i = 0; i < num_tests; i++ ) { if( verbose != 0 ) mbedtls_printf( " %s CMAC #%u: ", testname, i +1 ); if( ( ret = mbedtls_cmac_generate( &ctx, messages, message_lengths[i], tag, block_size ) ) != 0 ) { if( verbose != 0 ) mbedtls_printf( "failed\n" ); goto exit; } if( ( ret = memcmp( tag, &expected_result[i * block_size], block_size ) ) != 0 ) { if( verbose != 0 ) mbedtls_printf( "failed\n" ); goto exit; } if( ( ret = mbedtls_cmac_verify( &ctx, messages, message_lengths[i], &expected_result[i * block_size], block_size ) != 0 ) ) { if( verbose != 0 ) mbedtls_printf( "failed\n" ); goto exit; } mbedtls_printf( "passed\n" ); } exit: free( tag ); mbedtls_cmac_free( &ctx ); return( ret ); } #ifdef MBEDTLS_AES_C int test_aes128_cmac_prf( verbose ) { int i; int ret; unsigned char tag[16]; for( i = 0; i < NB_PRF_TESTS; i++ ) { mbedtls_printf( " AES CMAC 128 PRF #%u: ", i ); ret = mbedtls_aes_cmac_prf_128( PRFK, PRFKlen[i], PRFM, 20, tag ); if( ret != 0 || memcmp( tag, PRFT[i], 16 ) != 0 ) { if( verbose != 0 ) mbedtls_printf( "failed\n" ); return( ret ); } else if( verbose != 0 ) { mbedtls_printf( "passed\n" ); } } return( ret ); } #endif /* MBEDTLS_AES_C */ int mbedtls_cmac_self_test( int verbose ) { int ret; #ifdef MBEDTLS_AES_C test_cmac_with_cipher(verbose, "AES 128", aes_128_key, 128, test_message, aes_message_lengths, aes_128_subkeys, aes_128_expected_result, MBEDTLS_CIPHER_ID_AES, AES_BLOCK_SIZE ); test_cmac_with_cipher(verbose, "AES 192", aes_192_key, 192, test_message, aes_message_lengths, aes_192_subkeys, aes_192_expected_result, MBEDTLS_CIPHER_ID_AES, AES_BLOCK_SIZE ); test_cmac_with_cipher(verbose, "AES 256", aes_256_key, 256, test_message, aes_message_lengths, aes_256_subkeys, aes_256_expected_result, MBEDTLS_CIPHER_ID_AES, AES_BLOCK_SIZE ); #endif /* MBEDTLS_AES_C */ #ifdef MBEDTLS_DES_C test_cmac_with_cipher(verbose, "3DES 2 key", des3_2key_key, 192, test_message, des3_message_lengths, des3_2key_subkeys, T_3des_2key, MBEDTLS_CIPHER_ID_3DES, DES3_BLOCK_SIZE ); test_cmac_with_cipher(verbose, "3DES 3 key", des3_3key_key, 192, test_message, des3_message_lengths, des3_3key_subkeys, T_3des_3key, MBEDTLS_CIPHER_ID_3DES, DES3_BLOCK_SIZE ); #endif /* MBEDTLS_DES_C */ #ifdef MBEDTLS_AES_C test_aes128_cmac_prf( verbose ); #endif /* MBEDTLS_AES_C */ if( verbose != 0 ) mbedtls_printf( "\n" ); return( 0 ); } #endif /* MBEDTLS_SELF_TEST */ #endif /* MBEDTLS_CMAC_C */