/* * NIST SP800-38B compliant CMAC implementation * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of mbed TLS (https://tls.mbed.org) */ /* * Definition of CMAC: * http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf * RFC 4493 "The AES-CMAC Algorithm" */ #if !defined(MBEDTLS_CONFIG_FILE) #include "mbedtls/config.h" #else #include MBEDTLS_CONFIG_FILE #endif #if defined(MBEDTLS_CMAC_C) #include "mbedtls/cmac.h" #include #if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_AES_C) #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define mbedtls_printf printf #endif /* MBEDTLS_PLATFORM_C */ #endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */ /* * Macros for common operations. * Results in smaller compiled code than static inline functions. */ /* * XOR 128-bit */ #define XOR_128( i1, i2, o ) \ for( i = 0; i < 16; i++ ) \ ( o )[i] = ( i1 )[i] ^ ( i2 )[i]; /* * Update the CMAC state in Mn using an input block x * TODO: Compiler optimisation */ #define UPDATE_CMAC( x ) \ XOR_128( Mn, ( x ), Mn ); \ if( ( ret = mbedtls_cipher_update( &ctx->cipher_ctx, \ Mn, 16, Mn, &olen ) ) != 0 ) \ return( ret ); /* Implementation that should never be optimized out by the compiler */ static void mbedtls_zeroize( void *v, size_t n ) { volatile unsigned char *p = v; while( n-- ) *p++ = 0; } /* * Initialize context */ void mbedtls_cmac_init( mbedtls_cmac_context *ctx ) { memset( ctx, 0, sizeof( mbedtls_cmac_context ) ); } /* * Multiply by u in GF(2^128) * * As explained in the paper, this can be achieved as * If MSB(p) = 0, then p = (p << 1) * If MSB(p) = 1, then p = (p << 1) ^ Rb * with Rb = 0x87 * * Input and output MUST not point to the same buffer */ static void multiply_by_u( unsigned char *output, const unsigned char *input ) { const unsigned char Rb = 0x87; /* block size 16 only */ unsigned char mask; unsigned char overflow = 0; int i; for( i = 15; i >= 0; i-- ) { output[i] = input[i] << 1 | overflow; overflow = input[i] >> 7; } /* mask = ( input[0] >> 7 ) ? 0xff : 0x00 * using bit operations to avoid branches */ /* MSVC has a warning about unary minus on unsigned, but this is * well-defined and precisely what we want to do here */ #if defined(_MSC_VER) #pragma warning( push ) #pragma warning( disable : 4146 ) #endif mask = - ( input[0] >> 7 ); #if defined(_MSC_VER) #pragma warning( pop ) #endif output[15] ^= Rb & mask; } /* * Generate subkeys */ static int generate_subkeys( mbedtls_cmac_context *ctx ) { int ret; unsigned char L[16]; size_t olen; /* Calculate Ek(0) */ memset( L, 0, 16 ); if( ( ret = mbedtls_cipher_update( &ctx->cipher_ctx, L, 16, L, &olen ) ) != 0 ) { return( ret ); } /* * Generate K1 and K2 */ multiply_by_u( ctx->K1, L ); multiply_by_u( ctx->K2, ctx->K1 ); mbedtls_zeroize( L, sizeof( L ) ); return( 0 ); } int mbedtls_cmac_setkey( mbedtls_cmac_context *ctx, mbedtls_cipher_id_t cipher, const unsigned char *key, unsigned int keybits ) { int ret; const mbedtls_cipher_info_t *cipher_info; cipher_info = mbedtls_cipher_info_from_values( cipher, keybits, MBEDTLS_MODE_ECB ); if( cipher_info == NULL ) return( MBEDTLS_ERR_CMAC_BAD_INPUT ); if( cipher_info->block_size != 16 ) return( MBEDTLS_ERR_CMAC_BAD_INPUT ); mbedtls_cipher_free( &ctx->cipher_ctx ); if( ( ret = mbedtls_cipher_setup( &ctx->cipher_ctx, cipher_info ) ) != 0 ) return( ret ); if( ( ret = mbedtls_cipher_setkey( &ctx->cipher_ctx, key, keybits, MBEDTLS_ENCRYPT ) ) != 0 ) { return( ret ); } return( generate_subkeys( ctx ) ); } /* * Free context */ void mbedtls_cmac_free( mbedtls_cmac_context *ctx ) { mbedtls_cipher_free( &ctx->cipher_ctx ); mbedtls_zeroize( ctx, sizeof( mbedtls_cmac_context ) ); } /* * Create padded last block from (partial) last block. * * We can't use the padding option from the cipher layer, as it only works for * CBC and we use ECB mode, and anyway we need to XOR K1 or K2 in addition. */ static void padding( unsigned char padded_block[16], const unsigned char *last_block, size_t length ) { size_t j; for( j = 0; j < 16; j++ ) { if( j < length ) padded_block[j] = last_block[j]; else if( j == length ) padded_block[j] = 0x80; else padded_block[j] = 0x00; } } /* * Generate tag on complete message */ static int cmac_generate( mbedtls_cmac_context *ctx, const unsigned char *input, size_t in_len, unsigned char *tag, size_t tag_len ) { unsigned char Mn[16]; unsigned char M_last[16]; unsigned char padded[16]; int n, i, j, ret, flag; size_t olen; /* * Check in_len requirements: SP800-38B A * 4 is a worst case bottom limit */ if( tag_len < 4 || tag_len > 16 || tag_len % 2 != 0 ) return( MBEDTLS_ERR_CMAC_BAD_INPUT ); n = ( in_len + 15 ) / 16; /* n is number of rounds */ if( n == 0 ) { n = 1; flag = 0; } else { flag = ( ( in_len % 16 ) == 0); } /* Calculate last block */ if( flag ) { /* Last block is complete block */ XOR_128( &input[16 * ( n - 1 )], ctx->K1, M_last ); } else { padding( padded, &input[16 * ( n - 1 )], in_len % 16 ); XOR_128( padded, ctx->K2, M_last ); } memset( Mn, 0, 16 ); for( j = 0; j < n - 1; j++ ) { UPDATE_CMAC( &input[16 * j] ); } UPDATE_CMAC( M_last ); memcpy( tag, Mn, 16 ); return( 0 ); } int mbedtls_cmac_generate( mbedtls_cmac_context *ctx, const unsigned char *input, size_t in_len, unsigned char *tag, size_t tag_len ) { return( cmac_generate( ctx, input, in_len, tag, tag_len ) ); } /* * Authenticated decryption */ int mbedtls_cmac_verify( mbedtls_cmac_context *ctx, const unsigned char *input, size_t in_len, const unsigned char *tag, size_t tag_len ) { int ret; unsigned char check_tag[16]; unsigned char i; int diff; if( ( ret = cmac_generate( ctx, input, in_len, check_tag, tag_len ) ) != 0 ) { return ret; } /* Check tag in "constant-time" */ for( diff = 0, i = 0; i < tag_len; i++ ) { diff |= tag[i] ^ check_tag[i]; } if( diff != 0 ) { return( MBEDTLS_ERR_CMAC_VERIFY_FAILED ); } return( 0 ); } int mbedtls_aes_cmac_prf_128( mbedtls_cmac_context *ctx, const unsigned char *key, size_t key_length, const unsigned char *input, size_t in_len, unsigned char *tag ) { int ret; unsigned char zero_key[16]; unsigned char int_key[16]; if( key_length == 16 ) { /* Use key as is */ memcpy( int_key, key, 16 ); } else { mbedtls_cmac_context zero_ctx; /* Key is AES_CMAC(0, key) */ mbedtls_cmac_init( &zero_ctx ); memset( zero_key, 0, 16 ); ret = mbedtls_cmac_setkey( &zero_ctx, MBEDTLS_CIPHER_ID_AES, zero_key, 8 * sizeof zero_key ); if( ret != 0 ) { return( ret ); } ret = mbedtls_cmac_generate( &zero_ctx, key, key_length, int_key, 16 ); if( ret != 0 ) { return( ret ); } } ret = mbedtls_cmac_setkey( ctx, MBEDTLS_CIPHER_ID_AES, int_key, 8 * sizeof int_key ); if( ret != 0 ) { return( ret ); } mbedtls_zeroize( int_key, sizeof( int_key ) ); return( mbedtls_cmac_generate( ctx, input, in_len, tag, 16 ) ); } #if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_AES_C) /* * Examples 1 to 4 from SP800-3B corrected Appendix D.1 * http://csrc.nist.gov/publications/nistpubs/800-38B/Updated_CMAC_Examples.pdf */ #define NB_CMAC_TESTS 4 #define NB_PRF_TESTS 3 /* Key */ static const unsigned char key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c }; /* Assume we don't need to test Ek0 as this is a function of the cipher */ /* Subkey K1 */ static const unsigned char K1[] = { 0xfb, 0xee, 0xd6, 0x18, 0x35, 0x71, 0x33, 0x66, 0x7c, 0x85, 0xe0, 0x8f, 0x72, 0x36, 0xa8, 0xde }; /* Subkey K2 */ static const unsigned char K2[] = { 0xf7, 0xdd, 0xac, 0x30, 0x6a, 0xe2, 0x66, 0xcc, 0xf9, 0x0b, 0xc1, 0x1e, 0xe4, 0x6d, 0x51, 0x3b }; /* All Messages */ static const unsigned char M[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 }; static const unsigned char T[NB_CMAC_TESTS][16] = { { 0xbb, 0x1d, 0x69, 0x29, 0xe9, 0x59, 0x37, 0x28, 0x7f, 0xa3, 0x7d, 0x12, 0x9b, 0x75, 0x67, 0x46 }, { 0x07, 0x0a, 0x16, 0xb4, 0x6b, 0x4d, 0x41, 0x44, 0xf7, 0x9b, 0xdd, 0x9d, 0xd0, 0x4a, 0x28, 0x7c }, { 0xdf, 0xa6, 0x67, 0x47, 0xde, 0x9a, 0xe6, 0x30, 0x30, 0xca, 0x32, 0x61, 0x14, 0x97, 0xc8, 0x27 }, { 0x51, 0xf0, 0xbe, 0xbf, 0x7e, 0x3b, 0x9d, 0x92, 0xfc, 0x49, 0x74, 0x17, 0x79, 0x36, 0x3c, 0xfe } }; /* Sizes in bytes */ static const size_t Mlen[NB_CMAC_TESTS] = { 0, 16, 40, 64 }; /* PRF K */ static const unsigned char PRFK[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xed, 0xcb }; /* Sizes in bytes */ static const size_t PRFKlen[NB_PRF_TESTS] = { 18, 16, 10 }; /* PRF M */ static const unsigned char PRFM[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13 }; static const unsigned char PRFT[NB_PRF_TESTS][16] = { { 0x84, 0xa3, 0x48, 0xa4, 0xa4, 0x5d, 0x23, 0x5b, 0xab, 0xff, 0xfc, 0x0d, 0x2b, 0x4d, 0xa0, 0x9a }, { 0x98, 0x0a, 0xe8, 0x7b, 0x5f, 0x4c, 0x9c, 0x52, 0x14, 0xf5, 0xb6, 0xa8, 0x45, 0x5e, 0x4c, 0x2d }, { 0x29, 0x0d, 0x9e, 0x11, 0x2e, 0xdb, 0x09, 0xee, 0x14, 0x1f, 0xcf, 0x64, 0xc0, 0xb7, 0x2f, 0x3d } }; int mbedtls_cmac_self_test( int verbose ) { mbedtls_cmac_context ctx; unsigned char tag[16]; int i; int ret; mbedtls_cmac_init( &ctx ); if( mbedtls_cmac_setkey( &ctx, MBEDTLS_CIPHER_ID_AES, key, 8 * sizeof key ) != 0 ) { if( verbose != 0 ) mbedtls_printf( " CMAC: setup failed" ); return( 1 ); } if( ( memcmp( ctx.K1, K1, 16 ) != 0 ) || ( memcmp( ctx.K2, K2, 16 ) != 0 ) ) { if( verbose != 0 ) mbedtls_printf( " CMAC: subkey generation failed" ); return( 1 ); } for( i = 0; i < NB_CMAC_TESTS; i++ ) { mbedtls_printf( " AES-128-CMAC #%u: ", i ); ret = mbedtls_cmac_generate( &ctx, M, Mlen[i], tag, 16 ); if( ret != 0 || memcmp( tag, T[i], 16 ) != 0 ) { if( verbose != 0 ) mbedtls_printf( "failed\n" ); return( 1 ); } ret = mbedtls_cmac_verify( &ctx, M, Mlen[i], T[i], 16 ); if( ret != 0 ) { if( verbose != 0 ) mbedtls_printf( "failed\n" ); return( 1 ); } if( verbose != 0 ) mbedtls_printf( "passed\n" ); } for( i = 0; i < NB_PRF_TESTS; i++ ) { mbedtls_printf( " AES-CMAC-128-PRF #%u: ", i ); mbedtls_aes_cmac_prf_128( &ctx, PRFK, PRFKlen[i], PRFM, 20, tag ); if( ret != 0 || memcmp( tag, PRFT[i], 16 ) != 0 ) { if( verbose != 0 ) mbedtls_printf( "failed\n" ); return( 1 ); } if( verbose != 0 ) mbedtls_printf( "passed\n" ); } mbedtls_cmac_free( &ctx ); if( verbose != 0 ) mbedtls_printf( "\n" ); return( 0 ); } #endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */ #endif /* MBEDTLS_CMAC_C */