/* * Elliptic curves over GF(p) * * Copyright (C) 2012, Brainspark B.V. * * This file is part of PolarSSL (http://www.polarssl.org) * Lead Maintainer: Paul Bakker * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* * References: * * SEC1 http://www.secg.org/index.php?action=secg,docs_secg * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf */ #include "polarssl/config.h" #if defined(POLARSSL_ECP_C) #include "polarssl/ecp.h" /* * Initialize (the components of) a point */ void ecp_point_init( ecp_point *pt ) { if( pt == NULL ) return; pt->is_zero = 1; mpi_init( &pt->X ); mpi_init( &pt->Y ); } /* * Initialize (the components of) a group */ void ecp_group_init( ecp_group *grp ) { if( grp == NULL ) return; mpi_init( &grp->P ); mpi_init( &grp->B ); ecp_point_init( &grp->G ); mpi_init( &grp->N ); grp->modp = NULL; grp->pbits = 0; } /* * Unallocate (the components of) a point */ void ecp_point_free( ecp_point *pt ) { if( pt == NULL ) return; pt->is_zero = 1; mpi_free( &( pt->X ) ); mpi_free( &( pt->Y ) ); } /* * Unallocate (the components of) a group */ void ecp_group_free( ecp_group *grp ) { if( grp == NULL ) return; mpi_free( &grp->P ); mpi_free( &grp->B ); ecp_point_free( &grp->G ); mpi_free( &grp->N ); } /* * Set point to zero */ void ecp_set_zero( ecp_point *pt ) { pt->is_zero = 1; mpi_free( &pt->X ); mpi_free( &pt->Y ); } /* * Copy the contents of Q into P */ int ecp_copy( ecp_point *P, const ecp_point *Q ) { int ret = 0; if( Q->is_zero ) { ecp_set_zero( P ); return( ret ); } P->is_zero = Q->is_zero; MPI_CHK( mpi_copy( &P->X, &Q->X ) ); MPI_CHK( mpi_copy( &P->Y, &Q->Y ) ); cleanup: return( ret ); } /* * Import a non-zero point from ASCII strings */ int ecp_point_read_string( ecp_point *P, int radix, const char *x, const char *y ) { int ret = 0; P->is_zero = 0; MPI_CHK( mpi_read_string( &P->X, radix, x ) ); MPI_CHK( mpi_read_string( &P->Y, radix, y ) ); cleanup: return( ret ); } /* * Import an ECP group from ASCII strings */ int ecp_group_read_string( ecp_group *grp, int radix, const char *p, const char *b, const char *gx, const char *gy, const char *n) { int ret = 0; MPI_CHK( mpi_read_string( &grp->P, radix, p ) ); MPI_CHK( mpi_read_string( &grp->B, radix, b ) ); MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) ); MPI_CHK( mpi_read_string( &grp->N, radix, n ) ); cleanup: return( ret ); } /* * Wrapper around fast quasi-modp functions, with fallback to mpi_mod_mpi * * The quasi-modp functions expect an mpi N such that 0 <= N < 2^(2*pbits) * and change it in-place so that it can easily be brought in the 0..P-1 * range by a few additions or substractions. */ static int ecp_modp( mpi *N, const ecp_group *grp ) { int ret = 0; if( grp->modp == NULL ) return( mpi_mod_mpi( N, N, &grp->P ) ); if( mpi_cmp_int( N, 0 ) < 0 || mpi_msb( N ) > 2 * grp->pbits ) return( POLARSSL_ERR_ECP_GENERIC ); MPI_CHK( grp->modp( N ) ); while( mpi_cmp_int( N, 0 ) < 0 ) MPI_CHK( mpi_add_mpi( N, N, &grp->P ) ); while( mpi_cmp_mpi( N, &grp->P ) >= 0 ) MPI_CHK( mpi_sub_mpi( N, N, &grp->P ) ); cleanup: return( ret ); } /* * Size of p521 in terms of t_uint */ #define P521_SIZE_INT ( 521 / ( sizeof( t_uint ) << 3 ) + 1 ) /* * Bits to keep in the most significant t_uint */ #if defined(POLARSS_HAVE_INT8) #define P521_MASK 0x01 #else #define P521_MASK 0x01FF #endif /* * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5) */ static int ecp_mod_p521( mpi *N ) { int ret = 0; t_uint Mp[P521_SIZE_INT]; mpi M; if( N->n < P521_SIZE_INT ) return( 0 ); memset( Mp, 0, P521_SIZE_INT * sizeof( t_uint ) ); memcpy( Mp, N->p, P521_SIZE_INT * sizeof( t_uint ) ); Mp[P521_SIZE_INT - 1] &= P521_MASK; M.s = 1; M.n = P521_SIZE_INT; M.p = Mp; MPI_CHK( mpi_shift_r( N, 521 ) ); MPI_CHK( mpi_add_abs( N, N, &M ) ); cleanup: return( ret ); } /* * Domain parameters for secp192r1 */ #define SECP192R1_P \ "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF" #define SECP192R1_B \ "64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1" #define SECP192R1_GX \ "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012" #define SECP192R1_GY \ "07192B95FFC8DA78631011ED6B24CDD573F977A11E794811" #define SECP192R1_N \ "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831" /* * Domain parameters for secp224r1 */ #define SECP224R1_P \ "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001" #define SECP224R1_B \ "B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4" #define SECP224R1_GX \ "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21" #define SECP224R1_GY \ "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34" #define SECP224R1_N \ "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D" /* * Domain parameters for secp256r1 */ #define SECP256R1_P \ "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF" #define SECP256R1_B \ "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B" #define SECP256R1_GX \ "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296" #define SECP256R1_GY \ "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5" #define SECP256R1_N \ "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551" /* * Domain parameters for secp384r1 */ #define SECP384R1_P \ "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \ "FFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF" #define SECP384R1_B \ "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE814112" \ "0314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF" #define SECP384R1_GX \ "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B98" \ "59F741E082542A385502F25DBF55296C3A545E3872760AB7" #define SECP384R1_GY \ "3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147C" \ "E9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F" #define SECP384R1_N \ "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \ "C7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973" /* * Domain parameters for secp521r1 */ #define SECP521R1_P \ "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \ "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \ "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" #define SECP521R1_B \ "00000051953EB9618E1C9A1F929A21A0B68540EEA2DA725B" \ "99B315F3B8B489918EF109E156193951EC7E937B1652C0BD" \ "3BB1BF073573DF883D2C34F1EF451FD46B503F00" #define SECP521R1_GX \ "000000C6858E06B70404E9CD9E3ECB662395B4429C648139" \ "053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127" \ "A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66" #define SECP521R1_GY \ "0000011839296A789A3BC0045C8A5FB42C7D1BD998F54449" \ "579B446817AFBD17273E662C97EE72995EF42640C550B901" \ "3FAD0761353C7086A272C24088BE94769FD16650" #define SECP521R1_N \ "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \ "FFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148" \ "F709A5D03BB5C9B8899C47AEBB6FB71E91386409" /* * Set a group using well-known domain parameters */ int ecp_use_known_dp( ecp_group *grp, size_t index ) { switch( index ) { case POLARSSL_ECP_DP_SECP192R1: return( ecp_group_read_string( grp, 16, SECP192R1_P, SECP192R1_B, SECP192R1_GX, SECP192R1_GY, SECP192R1_N ) ); case POLARSSL_ECP_DP_SECP224R1: return( ecp_group_read_string( grp, 16, SECP224R1_P, SECP224R1_B, SECP224R1_GX, SECP224R1_GY, SECP224R1_N ) ); case POLARSSL_ECP_DP_SECP256R1: return( ecp_group_read_string( grp, 16, SECP256R1_P, SECP256R1_B, SECP256R1_GX, SECP256R1_GY, SECP256R1_N ) ); case POLARSSL_ECP_DP_SECP384R1: return( ecp_group_read_string( grp, 16, SECP384R1_P, SECP384R1_B, SECP384R1_GX, SECP384R1_GY, SECP384R1_N ) ); case POLARSSL_ECP_DP_SECP521R1: grp->modp = ecp_mod_p521; grp->pbits = 521; return( ecp_group_read_string( grp, 16, SECP521R1_P, SECP521R1_B, SECP521R1_GX, SECP521R1_GY, SECP521R1_N ) ); } return( POLARSSL_ERR_ECP_GENERIC ); } /* * Fast mod-p functions expect an argument in the 0 .. p^2 range. * * In order to garantee that, we need to ensure that operands of * mpi_mul_mpi are in the 0 .. p range. So, after each operation we will * bring the result back to this range. * * The following macros are helpers for that. */ /* * Reduce a mpi mod p in-place, general case, to use after mpi_mul_mpi */ #define MOD_MUL( N ) MPI_CHK( ecp_modp( &N, grp ) ) /* * Reduce a mpi mod p in-place, to use after mpi_sub_mpi */ #define MOD_SUB( N ) \ while( mpi_cmp_int( &N, 0 ) < 0 ) \ MPI_CHK( mpi_add_mpi( &N, &N, &grp->P ) ) /* * Reduce a mpi mod p in-place, to use after mpi_add_mpi and mpi_mul_int */ #define MOD_ADD( N ) \ while( mpi_cmp_mpi( &N, &grp->P ) >= 0 ) \ MPI_CHK( mpi_sub_mpi( &N, &N, &grp->P ) ) /* * Internal point format used for fast (that is, without mpi_inv_mod) * addition/doubling/multiplication: Jacobian coordinates (GECC ex 3.20) */ typedef struct { mpi X, Y, Z; } ecp_ptjac; /* * Initialize a point in Jacobian coordinates */ static void ecp_ptjac_init( ecp_ptjac *P ) { mpi_init( &P->X ); mpi_init( &P->Y ); mpi_init( &P->Z ); } /* * Free a point in Jacobian coordinates */ static void ecp_ptjac_free( ecp_ptjac *P ) { mpi_free( &P->X ); mpi_free( &P->Y ); mpi_free( &P->Z ); } /* * Copy P to R in Jacobian coordinates */ static int ecp_ptjac_copy( ecp_ptjac *R, const ecp_ptjac *P ) { int ret = 0; MPI_CHK( mpi_copy( &R->X, &P->X ) ); MPI_CHK( mpi_copy( &R->Y, &P->Y ) ); MPI_CHK( mpi_copy( &R->Z, &P->Z ) ); cleanup: return( ret ); } /* * Set P to zero in Jacobian coordinates */ static int ecp_ptjac_set_zero( ecp_ptjac *P ) { int ret = 0; MPI_CHK( mpi_lset( &P->X, 1 ) ); MPI_CHK( mpi_lset( &P->Y, 1 ) ); MPI_CHK( mpi_lset( &P->Z, 0 ) ); cleanup: return( ret ); } /* * Convert from affine to Jacobian coordinates */ static int ecp_aff_to_jac( ecp_ptjac *jac, const ecp_point *aff ) { int ret = 0; if( aff->is_zero ) return( ecp_ptjac_set_zero( jac ) ); MPI_CHK( mpi_copy( &jac->X, &aff->X ) ); MPI_CHK( mpi_copy( &jac->Y, &aff->Y ) ); MPI_CHK( mpi_lset( &jac->Z, 1 ) ); cleanup: return( ret ); } /* * Convert from Jacobian to affine coordinates */ static int ecp_jac_to_aff( const ecp_group *grp, ecp_point *aff, const ecp_ptjac *jac ) { int ret = 0; mpi Zi, ZZi, T; if( mpi_cmp_int( &jac->Z, 0 ) == 0 ) { ecp_set_zero( aff ); return( 0 ); } mpi_init( &Zi ); mpi_init( &ZZi ); mpi_init( &T ); aff->is_zero = 0; /* * aff.X = jac.X / (jac.Z)^2 mod p */ MPI_CHK( mpi_inv_mod( &Zi, &jac->Z, &grp->P ) ); MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi ); MPI_CHK( mpi_mul_mpi( &aff->X, &jac->X, &ZZi ) ); MOD_MUL( aff->X ); /* * aff.Y = jac.Y / (jac.Z)^3 mod p */ MPI_CHK( mpi_mul_mpi( &aff->Y, &jac->Y, &ZZi ) ); MOD_MUL( aff->Y ); MPI_CHK( mpi_mul_mpi( &aff->Y, &aff->Y, &Zi ) ); MOD_MUL( aff->Y ); cleanup: mpi_free( &Zi ); mpi_free( &ZZi ); mpi_free( &T ); return( ret ); } /* * Point doubling R = 2 P, Jacobian coordinates (GECC 3.21) */ static int ecp_double_jac( const ecp_group *grp, ecp_ptjac *R, const ecp_ptjac *P ) { int ret = 0; mpi T1, T2, T3, X, Y, Z; if( mpi_cmp_int( &P->Z, 0 ) == 0 ) return( ecp_ptjac_set_zero( R ) ); mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z ); MPI_CHK( mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 ); MPI_CHK( mpi_sub_mpi( &T2, &P->X, &T1 ) ); MOD_SUB( T2 ); MPI_CHK( mpi_add_mpi( &T1, &P->X, &T1 ) ); MOD_ADD( T1 ); MPI_CHK( mpi_mul_mpi( &T2, &T2, &T1 ) ); MOD_MUL( T2 ); MPI_CHK( mpi_mul_int( &T2, &T2, 3 ) ); MOD_ADD( T2 ); MPI_CHK( mpi_copy ( &Y, &P->Y ) ); MPI_CHK( mpi_shift_l( &Y, 1 ) ); MOD_ADD( Y ); MPI_CHK( mpi_mul_mpi( &Z, &Y, &P->Z ) ); MOD_MUL( Z ); MPI_CHK( mpi_mul_mpi( &Y, &Y, &Y ) ); MOD_MUL( Y ); MPI_CHK( mpi_mul_mpi( &T3, &Y, &P->X ) ); MOD_MUL( T3 ); MPI_CHK( mpi_mul_mpi( &Y, &Y, &Y ) ); MOD_MUL( Y ); /* * For Y = Y / 2 mod p, we must make sure that Y is even before * using right-shift. No need to reduce mod p afterwards. */ if( mpi_get_bit( &Y, 0 ) == 1 ) MPI_CHK( mpi_add_mpi( &Y, &Y, &grp->P ) ); MPI_CHK( mpi_shift_r( &Y, 1 ) ); MPI_CHK( mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X ); MPI_CHK( mpi_copy ( &T1, &T3 ) ); MPI_CHK( mpi_shift_l( &T1, 1 ) ); MOD_ADD( T1 ); MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X ); MPI_CHK( mpi_sub_mpi( &T1, &T3, &X ) ); MOD_SUB( T1 ); MPI_CHK( mpi_mul_mpi( &T1, &T1, &T2 ) ); MOD_MUL( T1 ); MPI_CHK( mpi_sub_mpi( &Y, &T1, &Y ) ); MOD_SUB( Y ); MPI_CHK( mpi_copy( &R->X, &X ) ); MPI_CHK( mpi_copy( &R->Y, &Y ) ); MPI_CHK( mpi_copy( &R->Z, &Z ) ); cleanup: mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z ); return( ret ); } /* * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22) */ static int ecp_add_mixed( const ecp_group *grp, ecp_ptjac *R, const ecp_ptjac *P, const ecp_point *Q ) { int ret = 0; mpi T1, T2, T3, T4, X, Y, Z; /* * Trivial cases: P == 0 or Q == 0 */ if( mpi_cmp_int( &P->Z, 0 ) == 0 ) return( ecp_aff_to_jac( R, Q ) ); if( Q->is_zero ) return( ecp_ptjac_copy( R, P ) ); mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); mpi_init( &T4 ); mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z ); MPI_CHK( mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 ); MPI_CHK( mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 ); MPI_CHK( mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 ); MPI_CHK( mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 ); MPI_CHK( mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 ); MPI_CHK( mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 ); if( mpi_cmp_int( &T1, 0 ) == 0 ) { if( mpi_cmp_int( &T2, 0 ) == 0 ) { ret = ecp_double_jac( grp, R, P ); goto cleanup; } else { ret = ecp_ptjac_set_zero( R ); goto cleanup; } } MPI_CHK( mpi_mul_mpi( &Z, &P->Z, &T1 ) ); MOD_MUL( Z ); MPI_CHK( mpi_mul_mpi( &T3, &T1, &T1 ) ); MOD_MUL( T3 ); MPI_CHK( mpi_mul_mpi( &T4, &T3, &T1 ) ); MOD_MUL( T4 ); MPI_CHK( mpi_mul_mpi( &T3, &T3, &P->X ) ); MOD_MUL( T3 ); MPI_CHK( mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 ); MPI_CHK( mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X ); MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X ); MPI_CHK( mpi_sub_mpi( &X, &X, &T4 ) ); MOD_SUB( X ); MPI_CHK( mpi_sub_mpi( &T3, &T3, &X ) ); MOD_SUB( T3 ); MPI_CHK( mpi_mul_mpi( &T3, &T3, &T2 ) ); MOD_MUL( T3 ); MPI_CHK( mpi_mul_mpi( &T4, &T4, &P->Y ) ); MOD_MUL( T4 ); MPI_CHK( mpi_sub_mpi( &Y, &T3, &T4 ) ); MOD_SUB( Y ); MPI_CHK( mpi_copy( &R->X, &X ) ); MPI_CHK( mpi_copy( &R->Y, &Y ) ); MPI_CHK( mpi_copy( &R->Z, &Z ) ); cleanup: mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); mpi_free( &T4 ); mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z ); return( ret ); } /* * Addition: R = P + Q, affine wrapper */ int ecp_add( const ecp_group *grp, ecp_point *R, const ecp_point *P, const ecp_point *Q ) { int ret = 0; ecp_ptjac J; ecp_ptjac_init( &J ); MPI_CHK( ecp_aff_to_jac( &J, P ) ); MPI_CHK( ecp_add_mixed( grp, &J, &J, Q ) ); MPI_CHK( ecp_jac_to_aff( grp, R, &J ) ); cleanup: ecp_ptjac_free( &J ); return( ret ); } /* * Integer multiplication: R = m * P (GECC 5.7, SPA-resistant variant) */ int ecp_mul( const ecp_group *grp, ecp_point *R, const mpi *m, const ecp_point *P ) { int ret = 0; size_t pos; ecp_ptjac Q[2]; ecp_ptjac_init( &Q[0] ); ecp_ptjac_init( &Q[1] ); /* * The general method works only for m >= 1 */ if( mpi_cmp_int( m, 0 ) == 0 ) { ecp_set_zero( R ); goto cleanup; } ecp_ptjac_set_zero( &Q[0] ); for( pos = mpi_msb( m ) - 1 ; ; pos-- ) { MPI_CHK( ecp_double_jac( grp, &Q[0], &Q[0] ) ); MPI_CHK( ecp_add_mixed( grp, &Q[1], &Q[0], P ) ); MPI_CHK( ecp_ptjac_copy( &Q[0], &Q[ mpi_get_bit( m, pos ) ] ) ); if( pos == 0 ) break; } MPI_CHK( ecp_jac_to_aff( grp, R, &Q[0] ) ); cleanup: ecp_ptjac_free( &Q[0] ); ecp_ptjac_free( &Q[1] ); return( ret ); } #if defined(POLARSSL_SELF_TEST) /* * Checkup routine */ int ecp_self_test( int verbose ) { return( verbose++ ); } #endif #endif