/* * Public Key abstraction layer * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of mbed TLS (https://tls.mbed.org) */ #if !defined(MBEDTLS_CONFIG_FILE) #include "mbedtls/config.h" #else #include MBEDTLS_CONFIG_FILE #endif #if defined(MBEDTLS_PK_C) #include "mbedtls/pk.h" #include "mbedtls/pk_internal.h" #if defined(MBEDTLS_RSA_C) || defined(MBEDTLS_PK_RSA_ALT_SUPPORT) #include "mbedtls/rsa.h" #endif #if defined(MBEDTLS_ECP_C) #include "mbedtls/ecp.h" #endif #if defined(MBEDTLS_ECDSA_C) #include "mbedtls/ecdsa.h" #endif #if defined(MBEDTLS_USE_TINYCRYPT) #include "tinycrypt/ecc.h" #include "tinycrypt/ecc_dsa.h" #include "mbedtls/asn1.h" #include "mbedtls/asn1write.h" #endif /* MBEDTLS_USE_TINYCRYPT */ #include "mbedtls/platform_util.h" #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define mbedtls_calloc calloc #define mbedtls_free free #endif #include #include #include /* Parameter validation macros based on platform_util.h */ #define PK_VALIDATE_RET( cond ) \ MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_PK_BAD_INPUT_DATA ) #define PK_VALIDATE( cond ) \ MBEDTLS_INTERNAL_VALIDATE( cond ) /* * Internal wrappers around RSA functions */ #if defined(MBEDTLS_RSA_C) static int rsa_can_do( mbedtls_pk_type_t type ) { return( type == MBEDTLS_PK_RSA || type == MBEDTLS_PK_RSASSA_PSS ); } static size_t rsa_get_bitlen( const void *ctx ) { const mbedtls_rsa_context * rsa = (const mbedtls_rsa_context *) ctx; return( 8 * mbedtls_rsa_get_len( rsa ) ); } static int rsa_verify_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ) { int ret; mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx; size_t rsa_len = mbedtls_rsa_get_len( rsa ); #if SIZE_MAX > UINT_MAX if( md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #endif /* SIZE_MAX > UINT_MAX */ if( sig_len < rsa_len ) return( MBEDTLS_ERR_RSA_VERIFY_FAILED ); if( ( ret = mbedtls_rsa_pkcs1_verify( rsa, NULL, NULL, MBEDTLS_RSA_PUBLIC, md_alg, (unsigned int) hash_len, hash, sig ) ) != 0 ) return( ret ); /* The buffer contains a valid signature followed by extra data. * We have a special error code for that so that so that callers can * use mbedtls_pk_verify() to check "Does the buffer start with a * valid signature?" and not just "Does the buffer contain a valid * signature?". */ if( sig_len > rsa_len ) return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH ); return( 0 ); } static int rsa_sign_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx; #if SIZE_MAX > UINT_MAX if( md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #endif /* SIZE_MAX > UINT_MAX */ *sig_len = mbedtls_rsa_get_len( rsa ); return( mbedtls_rsa_pkcs1_sign( rsa, f_rng, p_rng, MBEDTLS_RSA_PRIVATE, md_alg, (unsigned int) hash_len, hash, sig ) ); } static int rsa_decrypt_wrap( void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx; if( ilen != mbedtls_rsa_get_len( rsa ) ) return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); return( mbedtls_rsa_pkcs1_decrypt( rsa, f_rng, p_rng, MBEDTLS_RSA_PRIVATE, olen, input, output, osize ) ); } static int rsa_encrypt_wrap( void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx; *olen = mbedtls_rsa_get_len( rsa ); if( *olen > osize ) return( MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE ); return( mbedtls_rsa_pkcs1_encrypt( rsa, f_rng, p_rng, MBEDTLS_RSA_PUBLIC, ilen, input, output ) ); } static int rsa_check_pair_wrap( const void *pub, const void *prv ) { return( mbedtls_rsa_check_pub_priv( (const mbedtls_rsa_context *) pub, (const mbedtls_rsa_context *) prv ) ); } static void *rsa_alloc_wrap( void ) { void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_rsa_context ) ); if( ctx != NULL ) mbedtls_rsa_init( (mbedtls_rsa_context *) ctx, 0, 0 ); return( ctx ); } static void rsa_free_wrap( void *ctx ) { mbedtls_rsa_free( (mbedtls_rsa_context *) ctx ); mbedtls_free( ctx ); } static void rsa_debug( const void *ctx, mbedtls_pk_debug_item *items ) { items->type = MBEDTLS_PK_DEBUG_MPI; items->name = "rsa.N"; items->value = &( ((mbedtls_rsa_context *) ctx)->N ); items++; items->type = MBEDTLS_PK_DEBUG_MPI; items->name = "rsa.E"; items->value = &( ((mbedtls_rsa_context *) ctx)->E ); } const mbedtls_pk_info_t mbedtls_rsa_info = { MBEDTLS_PK_RSA, "RSA", rsa_get_bitlen, rsa_can_do, rsa_verify_wrap, rsa_sign_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif rsa_decrypt_wrap, rsa_encrypt_wrap, rsa_check_pair_wrap, rsa_alloc_wrap, rsa_free_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif rsa_debug, }; #endif /* MBEDTLS_RSA_C */ /* * Internal wrappers around ECC functions - based on ECP module */ #if defined(MBEDTLS_ECP_C) /* * Generic EC key */ static int eckey_can_do( mbedtls_pk_type_t type ) { return( type == MBEDTLS_PK_ECKEY || type == MBEDTLS_PK_ECKEY_DH || type == MBEDTLS_PK_ECDSA ); } static size_t eckey_get_bitlen( const void *ctx ) { return( ((mbedtls_ecp_keypair *) ctx)->grp.pbits ); } #if defined(MBEDTLS_ECDSA_C) /* Forward declarations */ static int ecdsa_verify_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ); static int ecdsa_sign_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ); static int eckey_verify_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ) { int ret; mbedtls_ecdsa_context ecdsa; mbedtls_ecdsa_init( &ecdsa ); if( ( ret = mbedtls_ecdsa_from_keypair( &ecdsa, ctx ) ) == 0 ) ret = ecdsa_verify_wrap( &ecdsa, md_alg, hash, hash_len, sig, sig_len ); mbedtls_ecdsa_free( &ecdsa ); return( ret ); } static int eckey_sign_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { int ret; mbedtls_ecdsa_context ecdsa; mbedtls_ecdsa_init( &ecdsa ); if( ( ret = mbedtls_ecdsa_from_keypair( &ecdsa, ctx ) ) == 0 ) ret = ecdsa_sign_wrap( &ecdsa, md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng ); mbedtls_ecdsa_free( &ecdsa ); return( ret ); } #if defined(MBEDTLS_ECP_RESTARTABLE) /* Forward declarations */ static int ecdsa_verify_rs_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len, void *rs_ctx ); static int ecdsa_sign_rs_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, void *rs_ctx ); /* * Restart context for ECDSA operations with ECKEY context * * We need to store an actual ECDSA context, as we need to pass the same to * the underlying ecdsa function, so we can't create it on the fly every time. */ typedef struct { mbedtls_ecdsa_restart_ctx ecdsa_rs; mbedtls_ecdsa_context ecdsa_ctx; } eckey_restart_ctx; static void *eckey_rs_alloc( void ) { eckey_restart_ctx *rs_ctx; void *ctx = mbedtls_calloc( 1, sizeof( eckey_restart_ctx ) ); if( ctx != NULL ) { rs_ctx = ctx; mbedtls_ecdsa_restart_init( &rs_ctx->ecdsa_rs ); mbedtls_ecdsa_init( &rs_ctx->ecdsa_ctx ); } return( ctx ); } static void eckey_rs_free( void *ctx ) { eckey_restart_ctx *rs_ctx; if( ctx == NULL) return; rs_ctx = ctx; mbedtls_ecdsa_restart_free( &rs_ctx->ecdsa_rs ); mbedtls_ecdsa_free( &rs_ctx->ecdsa_ctx ); mbedtls_free( ctx ); } static int eckey_verify_rs_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len, void *rs_ctx ) { int ret; eckey_restart_ctx *rs = rs_ctx; /* Should never happen */ if( rs == NULL ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); /* set up our own sub-context if needed (that is, on first run) */ if( rs->ecdsa_ctx.grp.pbits == 0 ) MBEDTLS_MPI_CHK( mbedtls_ecdsa_from_keypair( &rs->ecdsa_ctx, ctx ) ); MBEDTLS_MPI_CHK( ecdsa_verify_rs_wrap( &rs->ecdsa_ctx, md_alg, hash, hash_len, sig, sig_len, &rs->ecdsa_rs ) ); cleanup: return( ret ); } static int eckey_sign_rs_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, void *rs_ctx ) { int ret; eckey_restart_ctx *rs = rs_ctx; /* Should never happen */ if( rs == NULL ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); /* set up our own sub-context if needed (that is, on first run) */ if( rs->ecdsa_ctx.grp.pbits == 0 ) MBEDTLS_MPI_CHK( mbedtls_ecdsa_from_keypair( &rs->ecdsa_ctx, ctx ) ); MBEDTLS_MPI_CHK( ecdsa_sign_rs_wrap( &rs->ecdsa_ctx, md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng, &rs->ecdsa_rs ) ); cleanup: return( ret ); } #endif /* MBEDTLS_ECP_RESTARTABLE */ #endif /* MBEDTLS_ECDSA_C */ static int eckey_check_pair( const void *pub, const void *prv ) { return( mbedtls_ecp_check_pub_priv( (const mbedtls_ecp_keypair *) pub, (const mbedtls_ecp_keypair *) prv ) ); } static void *eckey_alloc_wrap( void ) { void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_ecp_keypair ) ); if( ctx != NULL ) mbedtls_ecp_keypair_init( ctx ); return( ctx ); } static void eckey_free_wrap( void *ctx ) { mbedtls_ecp_keypair_free( (mbedtls_ecp_keypair *) ctx ); mbedtls_free( ctx ); } static void eckey_debug( const void *ctx, mbedtls_pk_debug_item *items ) { items->type = MBEDTLS_PK_DEBUG_ECP; items->name = "eckey.Q"; items->value = &( ((mbedtls_ecp_keypair *) ctx)->Q ); } const mbedtls_pk_info_t mbedtls_eckey_info = { MBEDTLS_PK_ECKEY, "EC", eckey_get_bitlen, eckey_can_do, #if defined(MBEDTLS_ECDSA_C) eckey_verify_wrap, eckey_sign_wrap, #if defined(MBEDTLS_ECP_RESTARTABLE) eckey_verify_rs_wrap, eckey_sign_rs_wrap, #endif #else /* MBEDTLS_ECDSA_C */ NULL, NULL, #endif /* MBEDTLS_ECDSA_C */ NULL, NULL, eckey_check_pair, eckey_alloc_wrap, eckey_free_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) eckey_rs_alloc, eckey_rs_free, #endif eckey_debug, }; /* * EC key restricted to ECDH */ static int eckeydh_can_do( mbedtls_pk_type_t type ) { return( type == MBEDTLS_PK_ECKEY || type == MBEDTLS_PK_ECKEY_DH ); } const mbedtls_pk_info_t mbedtls_eckeydh_info = { MBEDTLS_PK_ECKEY_DH, "EC_DH", eckey_get_bitlen, /* Same underlying key structure */ eckeydh_can_do, NULL, NULL, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif NULL, NULL, eckey_check_pair, eckey_alloc_wrap, /* Same underlying key structure */ eckey_free_wrap, /* Same underlying key structure */ #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif eckey_debug, /* Same underlying key structure */ }; #endif /* MBEDTLS_ECP_C */ /* * Internal wrappers around ECC functions - based on TinyCrypt */ #if defined(MBEDTLS_USE_TINYCRYPT) /* * An ASN.1 encoded signature is a sequence of two ASN.1 integers. Parse one of * those integers and convert it to the fixed-length encoding. */ static int extract_ecdsa_sig_int( unsigned char **from, const unsigned char *end, unsigned char *to, size_t to_len ) { int ret; size_t unpadded_len, padding_len; if( ( ret = mbedtls_asn1_get_tag( from, end, &unpadded_len, MBEDTLS_ASN1_INTEGER ) ) != 0 ) { return( ret ); } while( unpadded_len > 0 && **from == 0x00 ) { ( *from )++; unpadded_len--; } if( unpadded_len > to_len || unpadded_len == 0 ) return( MBEDTLS_ERR_ASN1_LENGTH_MISMATCH ); padding_len = to_len - unpadded_len; memset( to, 0x00, padding_len ); mbedtls_platform_memcpy( to + padding_len, *from, unpadded_len ); ( *from ) += unpadded_len; return( 0 ); } /* * Convert a signature from an ASN.1 sequence of two integers * to a raw {r,s} buffer. Note: the provided sig buffer must be at least * twice as big as int_size. */ static int extract_ecdsa_sig( unsigned char **p, const unsigned char *end, unsigned char *sig, size_t int_size ) { int ret; size_t tmp_size; if( ( ret = mbedtls_asn1_get_tag( p, end, &tmp_size, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 ) return( ret ); /* Extract r */ if( ( ret = extract_ecdsa_sig_int( p, end, sig, int_size ) ) != 0 ) return( ret ); /* Extract s */ if( ( ret = extract_ecdsa_sig_int( p, end, sig + int_size, int_size ) ) != 0 ) return( ret ); return( 0 ); } static size_t uecc_eckey_get_bitlen( const void *ctx ) { (void) ctx; return( (size_t) ( NUM_ECC_BYTES * 8 ) ); } static int uecc_eckey_check_pair( const void *pub, const void *prv ) { const mbedtls_uecc_keypair *uecc_pub = (const mbedtls_uecc_keypair *) pub; const mbedtls_uecc_keypair *uecc_prv = (const mbedtls_uecc_keypair *) prv; if( mbedtls_platform_memcmp( uecc_pub->public_key, uecc_prv->public_key, 2 * NUM_ECC_BYTES ) == 0 ) { return( 0 ); } return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); } static int uecc_eckey_can_do( mbedtls_pk_type_t type ) { return( type == MBEDTLS_PK_ECDSA || type == MBEDTLS_PK_ECKEY ); } static int uecc_eckey_verify_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ) { int ret; volatile int ret_fi; uint8_t signature[2*NUM_ECC_BYTES]; unsigned char *p; const struct uECC_Curve_t * uecc_curve = uECC_secp256r1(); const mbedtls_uecc_keypair *keypair = (const mbedtls_uecc_keypair *) ctx; ((void) md_alg); p = (unsigned char*) sig; ret = extract_ecdsa_sig( &p, sig + sig_len, signature, NUM_ECC_BYTES ); if( ret != 0 ) return( ret ); ret_fi = uECC_verify( keypair->public_key, hash, (unsigned) hash_len, signature, uecc_curve ); if( ret_fi == UECC_ATTACK_DETECTED ) return( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED ); if( ret_fi == UECC_SUCCESS ) { mbedtls_platform_enforce_volatile_reads(); if( ret_fi == UECC_SUCCESS ) return( 0 ); else return( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED ); } return( MBEDTLS_ERR_PK_HW_ACCEL_FAILED ); } /* * Simultaneously convert and move raw MPI from the beginning of a buffer * to an ASN.1 MPI at the end of the buffer. * See also mbedtls_asn1_write_mpi(). * * p: pointer to the end of the output buffer * start: start of the output buffer, and also of the mpi to write at the end * n_len: length of the mpi to read from start * * Warning: * The total length of the output buffer must be smaller than 128 Bytes. */ static int asn1_write_mpibuf( unsigned char **p, unsigned char *start, size_t n_len ) { size_t len = 0; if( (size_t)( *p - start ) < n_len ) return( MBEDTLS_ERR_ASN1_BUF_TOO_SMALL ); len = n_len; *p -= len; memmove( *p, start, len ); /* ASN.1 DER encoding requires minimal length, so skip leading 0s. * Neither r nor s should be 0, but as a failsafe measure, still detect * that rather than overflowing the buffer in case of an error. */ while( len > 0 && **p == 0x00 ) { ++(*p); --len; } /* this is only reached if the signature was invalid */ if( len == 0 ) return( MBEDTLS_ERR_PK_HW_ACCEL_FAILED ); /* if the msb is 1, ASN.1 requires that we prepend a 0. * Neither r nor s can be 0, so we can assume len > 0 at all times. */ if( **p & 0x80 ) { if( *p - start < 1 ) return( MBEDTLS_ERR_ASN1_BUF_TOO_SMALL ); *--(*p) = 0x00; len += 1; } /* The ASN.1 length encoding is just a single Byte containing the length, * as we assume that the total buffer length is smaller than 128 Bytes. */ *--(*p) = len; *--(*p) = MBEDTLS_ASN1_INTEGER; len += 2; return( (int) len ); } /* Transcode signature from uECC format to ASN.1 sequence. * See ecdsa_signature_to_asn1 in ecdsa.c, but with byte buffers instead of * MPIs, and in-place. * * [in/out] sig: the signature pre- and post-transcoding * [in/out] sig_len: signature length pre- and post-transcoding * [int] buf_len: the available size the in/out buffer * * Warning: buf_len must be smaller than 128 Bytes. */ static int pk_ecdsa_sig_asn1_from_uecc( unsigned char *sig, size_t *sig_len, size_t buf_len ) { int ret; size_t len = 0; const size_t rs_len = *sig_len / 2; unsigned char *p = sig + buf_len; MBEDTLS_ASN1_CHK_ADD( len, asn1_write_mpibuf( &p, sig + rs_len, rs_len ) ); MBEDTLS_ASN1_CHK_ADD( len, asn1_write_mpibuf( &p, sig, rs_len ) ); /* The ASN.1 length encoding is just a single Byte containing the length, * as we assume that the total buffer length is smaller than 128 Bytes. */ *--p = len; *--p = MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE; len += 2; memmove( sig, p, len ); *sig_len = len; return( 0 ); } static int uecc_eckey_sign_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { const mbedtls_uecc_keypair *keypair = (const mbedtls_uecc_keypair *) ctx; const struct uECC_Curve_t * uecc_curve = uECC_secp256r1(); int ret; /* * RFC-4492 page 20: * * Ecdsa-Sig-Value ::= SEQUENCE { * r INTEGER, * s INTEGER * } * * Size is at most * 1 (tag) + 1 (len) + 1 (initial 0) + NUM_ECC_BYTES for each of r and s, * twice that + 1 (tag) + 2 (len) for the sequence * * (The ASN.1 length encodings are all 1-Byte encodings because * the total size is smaller than 128 Bytes). */ #define MAX_SECP256R1_ECDSA_SIG_LEN ( 3 + 2 * ( 3 + NUM_ECC_BYTES ) ) ret = uECC_sign( keypair->private_key, hash, hash_len, sig, uecc_curve ); /* TinyCrypt uses 0 to signal errors. */ if( ret == 0 ) return( MBEDTLS_ERR_PK_HW_ACCEL_FAILED ); *sig_len = 2 * NUM_ECC_BYTES; /* uECC owns its rng function pointer */ (void) f_rng; (void) p_rng; (void) md_alg; return( pk_ecdsa_sig_asn1_from_uecc( sig, sig_len, MAX_SECP256R1_ECDSA_SIG_LEN ) ); #undef MAX_SECP256R1_ECDSA_SIG_LEN } #if !defined(MBEDTLS_PK_SINGLE_TYPE) static void *uecc_eckey_alloc_wrap( void ) { return( mbedtls_calloc( 1, sizeof( mbedtls_uecc_keypair ) ) ); } static void uecc_eckey_free_wrap( void *ctx ) { if( ctx == NULL ) return; mbedtls_platform_zeroize( ctx, sizeof( mbedtls_uecc_keypair ) ); mbedtls_free( ctx ); } #endif /* MBEDTLS_PK_SINGLE_TYPE */ #if !defined(MBEDTLS_PK_SINGLE_TYPE) const mbedtls_pk_info_t mbedtls_uecc_eckey_info = MBEDTLS_PK_INFO( MBEDTLS_PK_INFO_ECKEY ); #endif #endif /* MBEDTLS_USE_TINYCRYPT */ /* * Internal wrappers around ECDSA functions */ #if defined(MBEDTLS_ECDSA_C) static int ecdsa_can_do( mbedtls_pk_type_t type ) { return( type == MBEDTLS_PK_ECDSA ); } static int ecdsa_verify_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ) { int ret; ((void) md_alg); ret = mbedtls_ecdsa_read_signature( (mbedtls_ecdsa_context *) ctx, hash, hash_len, sig, sig_len ); if( ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH ) return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH ); return( ret ); } static int ecdsa_sign_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { return( mbedtls_ecdsa_write_signature( (mbedtls_ecdsa_context *) ctx, md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng ) ); } #if defined(MBEDTLS_ECP_RESTARTABLE) static int ecdsa_verify_rs_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len, void *rs_ctx ) { int ret; ((void) md_alg); ret = mbedtls_ecdsa_read_signature_restartable( (mbedtls_ecdsa_context *) ctx, hash, hash_len, sig, sig_len, (mbedtls_ecdsa_restart_ctx *) rs_ctx ); if( ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH ) return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH ); return( ret ); } static int ecdsa_sign_rs_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, void *rs_ctx ) { return( mbedtls_ecdsa_write_signature_restartable( (mbedtls_ecdsa_context *) ctx, md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng, (mbedtls_ecdsa_restart_ctx *) rs_ctx ) ); } #endif /* MBEDTLS_ECP_RESTARTABLE */ static void *ecdsa_alloc_wrap( void ) { void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_ecdsa_context ) ); if( ctx != NULL ) mbedtls_ecdsa_init( (mbedtls_ecdsa_context *) ctx ); return( ctx ); } static void ecdsa_free_wrap( void *ctx ) { mbedtls_ecdsa_free( (mbedtls_ecdsa_context *) ctx ); mbedtls_free( ctx ); } #if defined(MBEDTLS_ECP_RESTARTABLE) static void *ecdsa_rs_alloc( void ) { void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_ecdsa_restart_ctx ) ); if( ctx != NULL ) mbedtls_ecdsa_restart_init( ctx ); return( ctx ); } static void ecdsa_rs_free( void *ctx ) { mbedtls_ecdsa_restart_free( ctx ); mbedtls_free( ctx ); } #endif /* MBEDTLS_ECP_RESTARTABLE */ const mbedtls_pk_info_t mbedtls_ecdsa_info = { MBEDTLS_PK_ECDSA, "ECDSA", eckey_get_bitlen, /* Compatible key structures */ ecdsa_can_do, ecdsa_verify_wrap, ecdsa_sign_wrap, #if defined(MBEDTLS_ECP_RESTARTABLE) ecdsa_verify_rs_wrap, ecdsa_sign_rs_wrap, #endif NULL, NULL, eckey_check_pair, /* Compatible key structures */ ecdsa_alloc_wrap, ecdsa_free_wrap, #if defined(MBEDTLS_ECP_RESTARTABLE) ecdsa_rs_alloc, ecdsa_rs_free, #endif eckey_debug, /* Compatible key structures */ }; #endif /* MBEDTLS_ECDSA_C */ /* * Internal wrappers for RSA-alt support */ #if defined(MBEDTLS_PK_RSA_ALT_SUPPORT) static int rsa_alt_can_do( mbedtls_pk_type_t type ) { return( type == MBEDTLS_PK_RSA ); } static size_t rsa_alt_get_bitlen( const void *ctx ) { const mbedtls_rsa_alt_context *rsa_alt = (const mbedtls_rsa_alt_context *) ctx; return( 8 * rsa_alt->key_len_func( rsa_alt->key ) ); } static int rsa_alt_sign_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { mbedtls_rsa_alt_context *rsa_alt = (mbedtls_rsa_alt_context *) ctx; #if SIZE_MAX > UINT_MAX if( UINT_MAX < hash_len ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #endif /* SIZE_MAX > UINT_MAX */ *sig_len = rsa_alt->key_len_func( rsa_alt->key ); return( rsa_alt->sign_func( rsa_alt->key, f_rng, p_rng, MBEDTLS_RSA_PRIVATE, md_alg, (unsigned int) hash_len, hash, sig ) ); } static int rsa_alt_decrypt_wrap( void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { mbedtls_rsa_alt_context *rsa_alt = (mbedtls_rsa_alt_context *) ctx; ((void) f_rng); ((void) p_rng); if( ilen != rsa_alt->key_len_func( rsa_alt->key ) ) return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); return( rsa_alt->decrypt_func( rsa_alt->key, MBEDTLS_RSA_PRIVATE, olen, input, output, osize ) ); } #if defined(MBEDTLS_RSA_C) static int rsa_alt_check_pair( const void *pub, const void *prv ) { unsigned char sig[MBEDTLS_MPI_MAX_SIZE]; unsigned char hash[32]; size_t sig_len = 0; int ret; if( rsa_alt_get_bitlen( prv ) != rsa_get_bitlen( pub ) ) return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); mbedtls_platform_memset( hash, 0x2a, sizeof( hash ) ); if( ( ret = rsa_alt_sign_wrap( (void *) prv, MBEDTLS_MD_NONE, hash, sizeof( hash ), sig, &sig_len, NULL, NULL ) ) != 0 ) { return( ret ); } if( rsa_verify_wrap( (void *) pub, MBEDTLS_MD_NONE, hash, sizeof( hash ), sig, sig_len ) != 0 ) { return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); } return( 0 ); } #endif /* MBEDTLS_RSA_C */ static void *rsa_alt_alloc_wrap( void ) { void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_rsa_alt_context ) ); if( ctx != NULL ) mbedtls_platform_memset( ctx, 0, sizeof( mbedtls_rsa_alt_context ) ); return( ctx ); } static void rsa_alt_free_wrap( void *ctx ) { mbedtls_platform_zeroize( ctx, sizeof( mbedtls_rsa_alt_context ) ); mbedtls_free( ctx ); } const mbedtls_pk_info_t mbedtls_rsa_alt_info = { MBEDTLS_PK_RSA_ALT, "RSA-alt", rsa_alt_get_bitlen, rsa_alt_can_do, NULL, rsa_alt_sign_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif rsa_alt_decrypt_wrap, NULL, #if defined(MBEDTLS_RSA_C) rsa_alt_check_pair, #else NULL, #endif rsa_alt_alloc_wrap, rsa_alt_free_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif NULL, }; #endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */ /* * Access to members of the pk_info structure. When a single PK type is * hardcoded, these should have zero runtime cost; otherwise, the usual * dynamic dispatch based on pk_info is used. * * For function members, don't make a getter, but a function that directly * calls the method, so that we can entirely get rid of function pointers * when hardcoding a single PK - some compilers optimize better that way. * * Not implemented for members that are only present in builds with * MBEDTLS_ECP_RESTARTABLE for now, as the main target for this is builds * with MBEDTLS_USE_TINYCRYPT, which don't have MBEDTLS_ECP_RESTARTABLE. */ #if defined(MBEDTLS_PK_SINGLE_TYPE) MBEDTLS_ALWAYS_INLINE static inline mbedtls_pk_type_t pk_info_type( mbedtls_pk_handle_t info ) { (void) info; return( MBEDTLS_PK_INFO_TYPE( MBEDTLS_PK_SINGLE_TYPE ) ); } MBEDTLS_ALWAYS_INLINE static inline const char * pk_info_name( mbedtls_pk_handle_t info ) { (void) info; return( MBEDTLS_PK_INFO_NAME( MBEDTLS_PK_SINGLE_TYPE ) ); } MBEDTLS_ALWAYS_INLINE static inline size_t pk_info_get_bitlen( mbedtls_pk_handle_t info, const void *ctx ) { (void) info; return( MBEDTLS_PK_INFO_GET_BITLEN( MBEDTLS_PK_SINGLE_TYPE )( ctx ) ); } MBEDTLS_ALWAYS_INLINE static inline int pk_info_can_do( mbedtls_pk_handle_t info, mbedtls_pk_type_t type ) { (void) info; return( MBEDTLS_PK_INFO_CAN_DO( MBEDTLS_PK_SINGLE_TYPE )( type ) ); } MBEDTLS_ALWAYS_INLINE static inline int pk_info_verify_func( mbedtls_pk_handle_t info, void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ) { (void) info; #if MBEDTLS_PK_INFO_VERIFY_OMIT( MBEDTLS_PK_SINGLE_TYPE ) (void) ctx; (void) md_alg; (void) hash; (void) hash_len; (void) sig; (void) sig_len; return( MBEDTLS_ERR_PK_TYPE_MISMATCH ); #else return( MBEDTLS_PK_INFO_VERIFY_FUNC( MBEDTLS_PK_SINGLE_TYPE )( ctx, md_alg, hash, hash_len, sig, sig_len ) ); #endif } MBEDTLS_ALWAYS_INLINE static inline int pk_info_sign_func( mbedtls_pk_handle_t info, void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { (void) info; #if MBEDTLS_PK_INFO_SIGN_OMIT( MBEDTLS_PK_SINGLE_TYPE ) (void) ctx; (void) md_alg; (void) hash; (void) hash_len; (void) sig; (void) sig_len; (void) f_rng; (void) p_rng; return( MBEDTLS_ERR_PK_TYPE_MISMATCH ); #else return( MBEDTLS_PK_INFO_SIGN_FUNC( MBEDTLS_PK_SINGLE_TYPE )( ctx, md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng ) ); #endif } MBEDTLS_ALWAYS_INLINE static inline int pk_info_decrypt_func( mbedtls_pk_handle_t info, void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { (void) info; #if MBEDTLS_PK_INFO_DECRYPT_OMIT( MBEDTLS_PK_SINGLE_TYPE ) (void) ctx; (void) input; (void) ilen; (void) output; (void) olen; (void) osize; (void) f_rng; (void) p_rng; return( MBEDTLS_ERR_PK_TYPE_MISMATCH ); #else return( MBEDTLS_PK_INFO_DECRYPT_FUNC( MBEDTLS_PK_SINGLE_TYPE )( ctx, input, ilen, output, olen, osize, f_rng, p_rng ) ); #endif } MBEDTLS_ALWAYS_INLINE static inline int pk_info_encrypt_func( mbedtls_pk_handle_t info, void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { (void) info; #if MBEDTLS_PK_INFO_ENCRYPT_OMIT( MBEDTLS_PK_SINGLE_TYPE ) (void) ctx; (void) input; (void) ilen; (void) output; (void) olen; (void) osize; (void) f_rng; (void) p_rng; return( MBEDTLS_ERR_PK_TYPE_MISMATCH ); #else return( MBEDTLS_PK_INFO_ENCRYPT_FUNC( MBEDTLS_PK_SINGLE_TYPE )( ctx, input, ilen, output, olen, osize, f_rng, p_rng ) ); #endif } MBEDTLS_ALWAYS_INLINE static inline int pk_info_check_pair_func( mbedtls_pk_handle_t info, const void *pub, const void *prv ) { (void) info; #if MBEDTLS_PK_INFO_CHECK_PAIR_OMIT( MBEDTLS_PK_SINGLE_TYPE ) (void) pub; (void) prv; return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #else return( MBEDTLS_PK_INFO_CHECK_PAIR_FUNC( MBEDTLS_PK_SINGLE_TYPE )( pub, prv ) ); #endif } MBEDTLS_ALWAYS_INLINE static inline int pk_info_debug_func( mbedtls_pk_handle_t info, const void *ctx, mbedtls_pk_debug_item *items ) { (void) info; #if MBEDTLS_PK_INFO_DEBUG_OMIT( MBEDTLS_PK_SINGLE_TYPE ) (void) ctx; (void) items; return( MBEDTLS_ERR_PK_TYPE_MISMATCH ); #else return( MBEDTLS_PK_INFO_DEBUG_FUNC( MBEDTLS_PK_SINGLE_TYPE )( ctx, items ) ); #endif } #else /* MBEDTLS_PK_SINGLE_TYPE */ MBEDTLS_ALWAYS_INLINE static inline mbedtls_pk_type_t pk_info_type( mbedtls_pk_handle_t info ) { return( info->type ); } MBEDTLS_ALWAYS_INLINE static inline const char * pk_info_name( mbedtls_pk_handle_t info ) { return( info->name ); } MBEDTLS_ALWAYS_INLINE static inline size_t pk_info_get_bitlen( mbedtls_pk_handle_t info, const void *ctx ) { return( info->get_bitlen( ctx ) ); } MBEDTLS_ALWAYS_INLINE static inline int pk_info_can_do( mbedtls_pk_handle_t info, mbedtls_pk_type_t type ) { return( info->can_do( type ) ); } MBEDTLS_ALWAYS_INLINE static inline int pk_info_verify_func( mbedtls_pk_handle_t info, void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ) { if( info->verify_func == NULL ) return( MBEDTLS_ERR_PK_TYPE_MISMATCH ); return( info->verify_func( ctx, md_alg, hash, hash_len, sig, sig_len ) ); } MBEDTLS_ALWAYS_INLINE static inline int pk_info_sign_func( mbedtls_pk_handle_t info, void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { if( info->sign_func == NULL ) return( MBEDTLS_ERR_PK_TYPE_MISMATCH ); return( info->sign_func( ctx, md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng ) ); } MBEDTLS_ALWAYS_INLINE static inline int pk_info_decrypt_func( mbedtls_pk_handle_t info, void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { if( info->decrypt_func == NULL ) return( MBEDTLS_ERR_PK_TYPE_MISMATCH ); return( info->decrypt_func( ctx, input, ilen, output, olen, osize, f_rng, p_rng ) ); } MBEDTLS_ALWAYS_INLINE static inline int pk_info_encrypt_func( mbedtls_pk_handle_t info, void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { if( info->encrypt_func == NULL ) return( MBEDTLS_ERR_PK_TYPE_MISMATCH ); return( info->encrypt_func( ctx, input, ilen, output, olen, osize, f_rng, p_rng ) ); } MBEDTLS_ALWAYS_INLINE static inline int pk_info_check_pair_func( mbedtls_pk_handle_t info, const void *pub, const void *prv ) { if( info->check_pair_func == NULL ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); return( info->check_pair_func( pub, prv ) ); } MBEDTLS_ALWAYS_INLINE static inline void *pk_info_ctx_alloc_func( mbedtls_pk_handle_t info ) { return( info->ctx_alloc_func( ) ); } MBEDTLS_ALWAYS_INLINE static inline void pk_info_ctx_free_func( mbedtls_pk_handle_t info, void *ctx ) { info->ctx_free_func( ctx ); } MBEDTLS_ALWAYS_INLINE static inline int pk_info_debug_func( mbedtls_pk_handle_t info, const void *ctx, mbedtls_pk_debug_item *items ) { if( info->debug_func == NULL ) return( MBEDTLS_ERR_PK_TYPE_MISMATCH ); info->debug_func( ctx, items ); return( 0 ); } #endif /* MBEDTLS_PK_SINGLE_TYPE */ /* * Initialise a mbedtls_pk_context */ void mbedtls_pk_init( mbedtls_pk_context *ctx ) { PK_VALIDATE( ctx != NULL ); #if !defined(MBEDTLS_PK_SINGLE_TYPE) ctx->pk_info = MBEDTLS_PK_INVALID_HANDLE; ctx->pk_ctx = NULL; #else memset( ctx, 0, sizeof( mbedtls_pk_context ) ); #endif } /* * Free (the components of) a mbedtls_pk_context */ void mbedtls_pk_free( mbedtls_pk_context *ctx ) { if( ctx == NULL ) return; #if !defined(MBEDTLS_PK_SINGLE_TYPE) if( MBEDTLS_PK_CTX_IS_VALID( ctx ) ) pk_info_ctx_free_func( MBEDTLS_PK_CTX_INFO( ctx ), ctx->pk_ctx ); #endif mbedtls_platform_zeroize( ctx, sizeof( mbedtls_pk_context ) ); } #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) /* * Initialize a restart context */ void mbedtls_pk_restart_init( mbedtls_pk_restart_ctx *ctx ) { PK_VALIDATE( ctx != NULL ); ctx->pk_info = NULL; ctx->rs_ctx = NULL; } /* * Free the components of a restart context */ void mbedtls_pk_restart_free( mbedtls_pk_restart_ctx *ctx ) { if( ctx == NULL || !MBEDTLS_PK_CTX_IS_VALID( ctx ) || ctx->pk_info->rs_free_func == NULL ) { return; } ctx->pk_info->rs_free_func( ctx->rs_ctx ); ctx->pk_info = MBEDTLS_PK_INVALID_HANDLE; ctx->rs_ctx = NULL; } #endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */ /* * Get pk_info structure from type */ mbedtls_pk_handle_t mbedtls_pk_info_from_type( mbedtls_pk_type_t pk_type ) { #if defined(MBEDTLS_PK_SINGLE_TYPE) if( pk_type == MBEDTLS_PK_INFO_TYPE( MBEDTLS_PK_SINGLE_TYPE ) ) return( MBEDTLS_PK_UNIQUE_VALID_HANDLE ); return( MBEDTLS_PK_INVALID_HANDLE ); #else /* MBEDTLS_PK_SINGLE_TYPE */ switch( pk_type ) { #if defined(MBEDTLS_RSA_C) case MBEDTLS_PK_RSA: return( &mbedtls_rsa_info ); #endif #if defined(MBEDTLS_ECP_C) case MBEDTLS_PK_ECKEY_DH: return( &mbedtls_eckeydh_info ); #endif #if defined(MBEDTLS_ECDSA_C) case MBEDTLS_PK_ECDSA: return( &mbedtls_ecdsa_info ); #endif #if defined(MBEDTLS_USE_TINYCRYPT) case MBEDTLS_PK_ECKEY: return( &mbedtls_uecc_eckey_info ); #else /* MBEDTLS_USE_TINYCRYPT */ #if defined(MBEDTLS_ECP_C) case MBEDTLS_PK_ECKEY: return( &mbedtls_eckey_info ); #endif #endif /* MBEDTLS_USE_TINYCRYPT */ /* MBEDTLS_PK_RSA_ALT omitted on purpose */ default: return( NULL ); } #endif /* MBEDTLS_PK_SINGLE_TYPE */ } /* * Initialise context */ int mbedtls_pk_setup( mbedtls_pk_context *ctx, mbedtls_pk_handle_t info ) { PK_VALIDATE_RET( ctx != NULL ); if( info == MBEDTLS_PK_INVALID_HANDLE ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #if !defined(MBEDTLS_PK_SINGLE_TYPE) if( ctx->pk_info != NULL ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); ctx->pk_info = info; if( ( ctx->pk_ctx = pk_info_ctx_alloc_func( info ) ) == NULL ) return( MBEDTLS_ERR_PK_ALLOC_FAILED ); #else (void) ctx; #endif return( 0 ); } #if defined(MBEDTLS_PK_RSA_ALT_SUPPORT) /* * Initialize an RSA-alt context */ int mbedtls_pk_setup_rsa_alt( mbedtls_pk_context *ctx, void * key, mbedtls_pk_rsa_alt_decrypt_func decrypt_func, mbedtls_pk_rsa_alt_sign_func sign_func, mbedtls_pk_rsa_alt_key_len_func key_len_func ) { mbedtls_rsa_alt_context *rsa_alt; mbedtls_pk_handle_t info = &mbedtls_rsa_alt_info; PK_VALIDATE_RET( ctx != NULL ); if( MBEDTLS_PK_CTX_IS_VALID( ctx ) ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); if( ( ctx->pk_ctx = info->ctx_alloc_func() ) == NULL ) return( MBEDTLS_ERR_PK_ALLOC_FAILED ); ctx->pk_info = info; rsa_alt = (mbedtls_rsa_alt_context *) ctx->pk_ctx; rsa_alt->key = key; rsa_alt->decrypt_func = decrypt_func; rsa_alt->sign_func = sign_func; rsa_alt->key_len_func = key_len_func; return( 0 ); } #endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */ /* * Tell if a PK can do the operations of the given type */ int mbedtls_pk_can_do( const mbedtls_pk_context *ctx, mbedtls_pk_type_t type ) { /* A context with null pk_info is not set up yet and can't do anything. * For backward compatibility, also accept NULL instead of a context * pointer. */ if( ctx == NULL || !MBEDTLS_PK_CTX_IS_VALID( ctx ) ) return( 0 ); return( pk_info_can_do( MBEDTLS_PK_CTX_INFO( ctx ), type ) ); } /* * Helper for mbedtls_pk_sign and mbedtls_pk_verify */ static inline int pk_hashlen_helper( mbedtls_md_type_t md_alg, size_t *hash_len ) { mbedtls_md_handle_t md_info; if( *hash_len != 0 ) return( 0 ); if( ( md_info = mbedtls_md_info_from_type( md_alg ) ) == MBEDTLS_MD_INVALID_HANDLE ) { return( -1 ); } *hash_len = mbedtls_md_get_size( md_info ); return( 0 ); } #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) /* * Helper to set up a restart context if needed */ static int pk_restart_setup( mbedtls_pk_restart_ctx *ctx, mbedtls_pk_handle_t info ) { /* Don't do anything if already set up or invalid */ if( ctx == NULL || MBEDTLS_PK_CTX_IS_VALID( ctx ) ) return( 0 ); /* Should never happen when we're called */ if( info->rs_alloc_func == NULL || info->rs_free_func == NULL ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); if( ( ctx->rs_ctx = info->rs_alloc_func() ) == NULL ) return( MBEDTLS_ERR_PK_ALLOC_FAILED ); ctx->pk_info = info; return( 0 ); } #endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */ /* * Verify a signature (restartable) */ int mbedtls_pk_verify_restartable( mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len, mbedtls_pk_restart_ctx *rs_ctx ) { PK_VALIDATE_RET( ctx != NULL ); PK_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && hash_len == 0 ) || hash != NULL ); PK_VALIDATE_RET( sig != NULL ); if( !MBEDTLS_PK_CTX_IS_VALID( ctx ) || pk_hashlen_helper( md_alg, &hash_len ) != 0 ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) /* optimization: use non-restartable version if restart disabled */ if( rs_ctx != NULL && mbedtls_ecp_restart_is_enabled() && ctx->pk_info->verify_rs_func != NULL ) { int ret; if( ( ret = pk_restart_setup( rs_ctx, ctx->pk_info ) ) != 0 ) return( ret ); ret = ctx->pk_info->verify_rs_func( ctx->pk_ctx, md_alg, hash, hash_len, sig, sig_len, rs_ctx->rs_ctx ); if( ret != MBEDTLS_ERR_ECP_IN_PROGRESS ) mbedtls_pk_restart_free( rs_ctx ); return( ret ); } #else /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */ (void) rs_ctx; #endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */ return( pk_info_verify_func( MBEDTLS_PK_CTX_INFO( ctx ), ctx->pk_ctx, md_alg, hash, hash_len, sig, sig_len ) ); } /* * Verify a signature */ int mbedtls_pk_verify( mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ) { return( mbedtls_pk_verify_restartable( ctx, md_alg, hash, hash_len, sig, sig_len, NULL ) ); } /* * Verify a signature with options */ int mbedtls_pk_verify_ext( mbedtls_pk_type_t type, const void *options, mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ) { PK_VALIDATE_RET( ctx != NULL ); PK_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && hash_len == 0 ) || hash != NULL ); PK_VALIDATE_RET( sig != NULL ); if( !MBEDTLS_PK_CTX_IS_VALID( ctx ) ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); if( ! mbedtls_pk_can_do( ctx, type ) ) return( MBEDTLS_ERR_PK_TYPE_MISMATCH ); if( type == MBEDTLS_PK_RSASSA_PSS ) { #if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PKCS1_V21) int ret; const mbedtls_pk_rsassa_pss_options *pss_opts; #if SIZE_MAX > UINT_MAX if( md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #endif /* SIZE_MAX > UINT_MAX */ if( options == NULL ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); pss_opts = (const mbedtls_pk_rsassa_pss_options *) options; if( sig_len < mbedtls_pk_get_len( ctx ) ) return( MBEDTLS_ERR_RSA_VERIFY_FAILED ); ret = mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_pk_rsa( *ctx ), NULL, NULL, MBEDTLS_RSA_PUBLIC, md_alg, (unsigned int) hash_len, hash, pss_opts->mgf1_hash_id, pss_opts->expected_salt_len, sig ); if( ret != 0 ) return( ret ); if( sig_len > mbedtls_pk_get_len( ctx ) ) return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH ); return( 0 ); #else return( MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE ); #endif /* MBEDTLS_RSA_C && MBEDTLS_PKCS1_V21 */ } /* General case: no options */ if( options != NULL ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); return( mbedtls_pk_verify( ctx, md_alg, hash, hash_len, sig, sig_len ) ); } /* * Make a signature (restartable) */ int mbedtls_pk_sign_restartable( mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, mbedtls_pk_restart_ctx *rs_ctx ) { PK_VALIDATE_RET( ctx != NULL ); PK_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && hash_len == 0 ) || hash != NULL ); PK_VALIDATE_RET( sig != NULL ); if( !MBEDTLS_PK_CTX_IS_VALID( ctx ) || pk_hashlen_helper( md_alg, &hash_len ) != 0 ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) /* optimization: use non-restartable version if restart disabled */ if( rs_ctx != NULL && mbedtls_ecp_restart_is_enabled() && ctx->pk_info->sign_rs_func != NULL ) { int ret; if( ( ret = pk_restart_setup( rs_ctx, ctx->pk_info ) ) != 0 ) return( ret ); ret = ctx->pk_info->sign_rs_func( ctx->pk_ctx, md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng, rs_ctx->rs_ctx ); if( ret != MBEDTLS_ERR_ECP_IN_PROGRESS ) mbedtls_pk_restart_free( rs_ctx ); return( ret ); } #else /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */ (void) rs_ctx; #endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */ return( pk_info_sign_func( MBEDTLS_PK_CTX_INFO( ctx ), ctx->pk_ctx, md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng ) ); } /* * Make a signature */ int mbedtls_pk_sign( mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { return( mbedtls_pk_sign_restartable( ctx, md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng, NULL ) ); } /* * Decrypt message */ int mbedtls_pk_decrypt( mbedtls_pk_context *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { PK_VALIDATE_RET( ctx != NULL ); PK_VALIDATE_RET( input != NULL || ilen == 0 ); PK_VALIDATE_RET( output != NULL || osize == 0 ); PK_VALIDATE_RET( olen != NULL ); if( !MBEDTLS_PK_CTX_IS_VALID( ctx ) ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); return( pk_info_decrypt_func( MBEDTLS_PK_CTX_INFO( ctx ), ctx->pk_ctx, input, ilen, output, olen, osize, f_rng, p_rng ) ); } /* * Encrypt message */ int mbedtls_pk_encrypt( mbedtls_pk_context *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { PK_VALIDATE_RET( ctx != NULL ); PK_VALIDATE_RET( input != NULL || ilen == 0 ); PK_VALIDATE_RET( output != NULL || osize == 0 ); PK_VALIDATE_RET( olen != NULL ); if( !MBEDTLS_PK_CTX_IS_VALID( ctx ) ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); return( pk_info_encrypt_func( MBEDTLS_PK_CTX_INFO( ctx ), ctx->pk_ctx, input, ilen, output, olen, osize, f_rng, p_rng ) ); } /* * Check public-private key pair */ int mbedtls_pk_check_pair( const mbedtls_pk_context *pub, const mbedtls_pk_context *prv ) { PK_VALIDATE_RET( pub != NULL ); PK_VALIDATE_RET( prv != NULL ); if( !MBEDTLS_PK_CTX_IS_VALID( pub ) || !MBEDTLS_PK_CTX_IS_VALID( prv ) ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #if defined(MBEDTLS_PK_RSA_ALT_SUPPORT) if( pk_info_type( prv->pk_info ) == MBEDTLS_PK_RSA_ALT ) { if( pk_info_type( pub->pk_info ) != MBEDTLS_PK_RSA ) return( MBEDTLS_ERR_PK_TYPE_MISMATCH ); } else #endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */ { if( MBEDTLS_PK_CTX_INFO( pub ) != MBEDTLS_PK_CTX_INFO( prv ) ) return( MBEDTLS_ERR_PK_TYPE_MISMATCH ); } return( pk_info_check_pair_func( MBEDTLS_PK_CTX_INFO( prv ), pub->pk_ctx, prv->pk_ctx ) ); } /* * Get key size in bits */ size_t mbedtls_pk_get_bitlen( const mbedtls_pk_context *ctx ) { /* For backward compatibility, accept NULL or a context that * isn't set up yet, and return a fake value that should be safe. */ if( ctx == NULL || !MBEDTLS_PK_CTX_IS_VALID( ctx ) ) return( 0 ); return( pk_info_get_bitlen( MBEDTLS_PK_CTX_INFO( ctx ), ctx->pk_ctx ) ); } /* * Export debug information */ int mbedtls_pk_debug( const mbedtls_pk_context *ctx, mbedtls_pk_debug_item *items ) { PK_VALIDATE_RET( ctx != NULL ); if( !MBEDTLS_PK_CTX_IS_VALID( ctx ) ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); return( pk_info_debug_func( MBEDTLS_PK_CTX_INFO( ctx ), ctx->pk_ctx, items ) ); } /* * Access the PK type name */ const char *mbedtls_pk_get_name( const mbedtls_pk_context *ctx ) { if( ctx == NULL || !MBEDTLS_PK_CTX_IS_VALID( ctx ) ) return( "invalid PK" ); return( pk_info_name( MBEDTLS_PK_CTX_INFO( ctx ) ) ); } /* * Access the PK type */ mbedtls_pk_type_t mbedtls_pk_get_type( const mbedtls_pk_context *ctx ) { if( ctx == NULL || !MBEDTLS_PK_CTX_IS_VALID( ctx ) ) return( MBEDTLS_PK_NONE ); return( pk_info_type( MBEDTLS_PK_CTX_INFO( ctx ) ) ); } #endif /* MBEDTLS_PK_C */