BEGIN_HEADER #include #include #include #include #include #include #include #include #include END_HEADER BEGIN_DEPENDENCIES depends_on:POLARSSL_RSA_C:POLARSSL_BIGNUM_C:POLARSSL_GENPRIME END_DEPENDENCIES BEGIN_CASE rsa_pkcs1_sign:message_hex_string:padding_mode:digest:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:result_hex_str:result { unsigned char message_str[1000]; unsigned char hash_result[1000]; unsigned char output[1000]; unsigned char output_str[1000]; rsa_context ctx; mpi P1, Q1, H, G; int msg_len; rnd_pseudo_info rnd_info; memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G ); rsa_init( &ctx, {padding_mode}, 0 ); memset( message_str, 0x00, 1000 ); memset( hash_result, 0x00, 1000 ); memset( output, 0x00, 1000 ); memset( output_str, 0x00, 1000 ); ctx.len = {mod} / 8; TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 ); TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 ); TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 ); TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 ); TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 ); TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 ); TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 ); TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); msg_len = unhexify( message_str, {message_hex_string} ); switch( {digest} ) { #ifdef POLARSSL_MD2_C case SIG_RSA_MD2: md2( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_MD4_C case SIG_RSA_MD4: md4( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_MD5_C case SIG_RSA_MD5: md5( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_SHA1_C case SIG_RSA_SHA1: sha1( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_SHA2_C case SIG_RSA_SHA224: sha2( message_str, msg_len, hash_result, 1 ); break; case SIG_RSA_SHA256: sha2( message_str, msg_len, hash_result, 0 ); break; #endif #ifdef POLARSSL_SHA4_C case SIG_RSA_SHA384: sha4( message_str, msg_len, hash_result, 1 ); break; case SIG_RSA_SHA512: sha4( message_str, msg_len, hash_result, 0 ); break; #endif } TEST_ASSERT( rsa_pkcs1_sign( &ctx, rnd_pseudo_rand, &rnd_info, RSA_PRIVATE, {digest}, 0, hash_result, output ) == {result} ); if( {result} == 0 ) { hexify( output_str, output, ctx.len ); TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); } mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G ); rsa_free( &ctx ); } END_CASE BEGIN_CASE rsa_pkcs1_verify:message_hex_string:padding_mode:digest:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result { unsigned char message_str[1000]; unsigned char hash_result[1000]; unsigned char result_str[1000]; rsa_context ctx; int msg_len; rsa_init( &ctx, {padding_mode}, 0 ); memset( message_str, 0x00, 1000 ); memset( hash_result, 0x00, 1000 ); memset( result_str, 0x00, 1000 ); ctx.len = {mod} / 8; TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); msg_len = unhexify( message_str, {message_hex_string} ); unhexify( result_str, {result_hex_str} ); switch( {digest} ) { #ifdef POLARSSL_MD2_C case SIG_RSA_MD2: md2( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_MD4_C case SIG_RSA_MD4: md4( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_MD5_C case SIG_RSA_MD5: md5( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_SHA1_C case SIG_RSA_SHA1: sha1( message_str, msg_len, hash_result ); break; #endif #ifdef POLARSSL_SHA2_C case SIG_RSA_SHA224: sha2( message_str, msg_len, hash_result, 1 ); break; case SIG_RSA_SHA256: sha2( message_str, msg_len, hash_result, 0 ); break; #endif #ifdef POLARSSL_SHA4_C case SIG_RSA_SHA384: sha4( message_str, msg_len, hash_result, 1 ); break; case SIG_RSA_SHA512: sha4( message_str, msg_len, hash_result, 0 ); break; #endif } TEST_ASSERT( rsa_pkcs1_verify( &ctx, NULL, NULL, RSA_PUBLIC, {digest}, 0, hash_result, result_str ) == {result} ); rsa_free( &ctx ); } END_CASE BEGIN_CASE rsa_pkcs1_sign_raw:message_hex_string:hash_result_string:padding_mode:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:result_hex_str { unsigned char message_str[1000]; unsigned char hash_result[1000]; unsigned char output[1000]; unsigned char output_str[1000]; rsa_context ctx; mpi P1, Q1, H, G; int hash_len; rnd_pseudo_info rnd_info; memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G ); rsa_init( &ctx, {padding_mode}, 0 ); memset( message_str, 0x00, 1000 ); memset( hash_result, 0x00, 1000 ); memset( output, 0x00, 1000 ); memset( output_str, 0x00, 1000 ); ctx.len = {mod} / 8; TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 ); TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 ); TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 ); TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 ); TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 ); TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 ); TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 ); TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); unhexify( message_str, {message_hex_string} ); hash_len = unhexify( hash_result, {hash_result_string} ); TEST_ASSERT( rsa_pkcs1_sign( &ctx, rnd_pseudo_rand, &rnd_info, RSA_PRIVATE, SIG_RSA_RAW, hash_len, hash_result, output ) == 0 ); hexify( output_str, output, ctx.len ); TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); /* For PKCS#1 v1.5, there is an alternative way to generate signatures */ if( {padding_mode} == RSA_PKCS_V15 ) { memset( output, 0x00, 1000 ); memset( output_str, 0x00, 1000 ); TEST_ASSERT( rsa_rsaes_pkcs1_v15_encrypt( &ctx, &rnd_pseudo_rand, &rnd_info, RSA_PRIVATE, hash_len, hash_result, output ) == 0 ); hexify( output_str, output, ctx.len ); TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); } mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G ); rsa_free( &ctx ); } END_CASE BEGIN_CASE rsa_pkcs1_verify_raw:message_hex_string:hash_result_string:padding_mode:mod:radix_N:input_N:radix_E:input_E:result_hex_str:correct { unsigned char message_str[1000]; unsigned char hash_result[1000]; unsigned char result_str[1000]; unsigned char output[1000]; rsa_context ctx; size_t hash_len, olen; rsa_init( &ctx, {padding_mode}, 0 ); memset( message_str, 0x00, 1000 ); memset( hash_result, 0x00, 1000 ); memset( result_str, 0x00, 1000 ); memset( output, 0x00, sizeof( output ) ); ctx.len = {mod} / 8; TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); unhexify( message_str, {message_hex_string} ); hash_len = unhexify( hash_result, {hash_result_string} ); unhexify( result_str, {result_hex_str} ); TEST_ASSERT( rsa_pkcs1_verify( &ctx, NULL, NULL, RSA_PUBLIC, SIG_RSA_RAW, hash_len, hash_result, result_str ) == {correct} ); /* For PKCS#1 v1.5, there is an alternative way to verify signatures */ if( {padding_mode} == RSA_PKCS_V15 ) { int ok; TEST_ASSERT( rsa_rsaes_pkcs1_v15_decrypt( &ctx, NULL, NULL, RSA_PUBLIC, &olen, result_str, output, sizeof( output ) ) == 0 ); ok = olen == hash_len && memcmp( output, hash_result, olen ) == 0; if( {correct} == 0 ) TEST_ASSERT( ok == 1 ); else TEST_ASSERT( ok == 0 ); } rsa_free( &ctx ); } END_CASE BEGIN_CASE rsa_pkcs1_encrypt:message_hex_string:padding_mode:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result { unsigned char message_str[1000]; unsigned char output[1000]; unsigned char output_str[1000]; rsa_context ctx; size_t msg_len; rnd_pseudo_info rnd_info; memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); rsa_init( &ctx, {padding_mode}, 0 ); memset( message_str, 0x00, 1000 ); memset( output, 0x00, 1000 ); memset( output_str, 0x00, 1000 ); ctx.len = {mod} / 8; TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); msg_len = unhexify( message_str, {message_hex_string} ); TEST_ASSERT( rsa_pkcs1_encrypt( &ctx, &rnd_pseudo_rand, &rnd_info, RSA_PUBLIC, msg_len, message_str, output ) == {result} ); if( {result} == 0 ) { hexify( output_str, output, ctx.len ); TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); } rsa_free( &ctx ); } END_CASE BEGIN_CASE rsa_pkcs1_encrypt_bad_rng:message_hex_string:padding_mode:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result { unsigned char message_str[1000]; unsigned char output[1000]; unsigned char output_str[1000]; rsa_context ctx; size_t msg_len; rsa_init( &ctx, {padding_mode}, 0 ); memset( message_str, 0x00, 1000 ); memset( output, 0x00, 1000 ); memset( output_str, 0x00, 1000 ); ctx.len = {mod} / 8; TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); msg_len = unhexify( message_str, {message_hex_string} ); TEST_ASSERT( rsa_pkcs1_encrypt( &ctx, &rnd_zero_rand, NULL, RSA_PUBLIC, msg_len, message_str, output ) == {result} ); if( {result} == 0 ) { hexify( output_str, output, ctx.len ); TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); } rsa_free( &ctx ); } END_CASE BEGIN_CASE rsa_pkcs1_decrypt:message_hex_string:padding_mode:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:max_output:result_hex_str:result { unsigned char message_str[1000]; unsigned char output[1000]; unsigned char output_str[1000]; rsa_context ctx; mpi P1, Q1, H, G; size_t output_len; rnd_pseudo_info rnd_info; memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G ); rsa_init( &ctx, {padding_mode}, 0 ); memset( message_str, 0x00, 1000 ); memset( output, 0x00, 1000 ); memset( output_str, 0x00, 1000 ); ctx.len = {mod} / 8; TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 ); TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 ); TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 ); TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 ); TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 ); TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 ); TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 ); TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); unhexify( message_str, {message_hex_string} ); output_len = 0; TEST_ASSERT( rsa_pkcs1_decrypt( &ctx, rnd_pseudo_rand, &rnd_info, RSA_PRIVATE, &output_len, message_str, output, {max_output} ) == {result} ); if( {result} == 0 ) { hexify( output_str, output, ctx.len ); TEST_ASSERT( strncasecmp( (char *) output_str, {result_hex_str}, strlen( {result_hex_str} ) ) == 0 ); } mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G ); rsa_free( &ctx ); } END_CASE BEGIN_CASE rsa_public:message_hex_string:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result { unsigned char message_str[1000]; unsigned char output[1000]; unsigned char output_str[1000]; rsa_context ctx; rsa_init( &ctx, RSA_PKCS_V15, 0 ); memset( message_str, 0x00, 1000 ); memset( output, 0x00, 1000 ); memset( output_str, 0x00, 1000 ); ctx.len = {mod} / 8; TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); unhexify( message_str, {message_hex_string} ); TEST_ASSERT( rsa_public( &ctx, message_str, output ) == {result} ); if( {result} == 0 ) { hexify( output_str, output, ctx.len ); TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); } rsa_free( &ctx ); } END_CASE BEGIN_CASE rsa_private:message_hex_string:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:result_hex_str:result { unsigned char message_str[1000]; unsigned char output[1000]; unsigned char output_str[1000]; rsa_context ctx; mpi P1, Q1, H, G; rnd_pseudo_info rnd_info; memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) ); mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G ); rsa_init( &ctx, RSA_PKCS_V15, 0 ); memset( message_str, 0x00, 1000 ); memset( output, 0x00, 1000 ); memset( output_str, 0x00, 1000 ); ctx.len = {mod} / 8; TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 ); TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 ); TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 ); TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 ); TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 ); TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 ); TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 ); TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); unhexify( message_str, {message_hex_string} ); TEST_ASSERT( rsa_private( &ctx, rnd_pseudo_rand, &rnd_info, message_str, output ) == {result} ); if( {result} == 0 ) { hexify( output_str, output, ctx.len ); TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); } mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G ); rsa_free( &ctx ); } END_CASE BEGIN_CASE rsa_check_privkey_null: { rsa_context ctx; memset( &ctx, 0x00, sizeof( rsa_context ) ); TEST_ASSERT( rsa_check_privkey( &ctx ) == POLARSSL_ERR_RSA_KEY_CHECK_FAILED ); } END_CASE BEGIN_CASE rsa_check_pubkey:radix_N:input_N:radix_E:input_E:result { rsa_context ctx; rsa_init( &ctx, RSA_PKCS_V15, 0 ); if( strlen( {input_N} ) ) { TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); } if( strlen( {input_E} ) ) { TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); } TEST_ASSERT( rsa_check_pubkey( &ctx ) == {result} ); rsa_free( &ctx ); } END_CASE BEGIN_CASE rsa_check_privkey:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:radix_D:input_D:radix_DP:input_DP:radix_DQ:input_DQ:radix_QP:input_QP:result { rsa_context ctx; rsa_init( &ctx, RSA_PKCS_V15, 0 ); ctx.len = {mod} / 8; if( strlen( {input_P} ) ) { TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); } if( strlen( {input_Q} ) ) { TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); } if( strlen( {input_N} ) ) { TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); } if( strlen( {input_E} ) ) { TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); } if( strlen( {input_D} ) ) { TEST_ASSERT( mpi_read_string( &ctx.D, {radix_D}, {input_D} ) == 0 ); } if( strlen( {input_DP} ) ) { TEST_ASSERT( mpi_read_string( &ctx.DP, {radix_DP}, {input_DP} ) == 0 ); } if( strlen( {input_DQ} ) ) { TEST_ASSERT( mpi_read_string( &ctx.DQ, {radix_DQ}, {input_DQ} ) == 0 ); } if( strlen( {input_QP} ) ) { TEST_ASSERT( mpi_read_string( &ctx.QP, {radix_QP}, {input_QP} ) == 0 ); } TEST_ASSERT( rsa_check_privkey( &ctx ) == {result} ); rsa_free( &ctx ); } END_CASE BEGIN_CASE rsa_gen_key:nrbits:exponent:result { rsa_context ctx; entropy_context entropy; ctr_drbg_context ctr_drbg; const char *pers = "test_suite_rsa"; entropy_init( &entropy ); TEST_ASSERT( ctr_drbg_init( &ctr_drbg, entropy_func, &entropy, (const unsigned char *) pers, strlen( pers ) ) == 0 ); rsa_init( &ctx, 0, 0 ); TEST_ASSERT( rsa_gen_key( &ctx, ctr_drbg_random, &ctr_drbg, {nrbits}, {exponent} ) == {result} ); if( {result} == 0 ) { TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); } rsa_free( &ctx ); } END_CASE BEGIN_CASE rsa_selftest: { TEST_ASSERT( rsa_self_test( 0 ) == 0 ); } END_CASE