mbedtls/tests/suites/helpers.function
Gilles Peskine 7ba73e5756 Explain the usage of is_valid in pthread mutexes
Document the usage inside the library, and relate it with how it's
additionally used in the test code.

Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
2021-02-22 19:40:41 +01:00

988 lines
32 KiB
Plaintext

#line 2 "suites/helpers.function"
/*----------------------------------------------------------------------------*/
/* Headers */
#include <stdlib.h>
#if defined(MBEDTLS_PLATFORM_C)
#include "mbedtls/platform.h"
#else
#include <stdio.h>
#define mbedtls_fprintf fprintf
#define mbedtls_snprintf snprintf
#define mbedtls_calloc calloc
#define mbedtls_free free
#define mbedtls_exit exit
#define mbedtls_time time
#define mbedtls_time_t time_t
#define MBEDTLS_EXIT_SUCCESS EXIT_SUCCESS
#define MBEDTLS_EXIT_FAILURE EXIT_FAILURE
#endif
#if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C)
#include "mbedtls/memory_buffer_alloc.h"
#endif
#if defined(MBEDTLS_CHECK_PARAMS)
#include "mbedtls/platform_util.h"
#include <setjmp.h>
#endif
#ifdef _MSC_VER
#include <basetsd.h>
typedef UINT8 uint8_t;
typedef INT32 int32_t;
typedef UINT32 uint32_t;
#define strncasecmp _strnicmp
#define strcasecmp _stricmp
#else
#include <stdint.h>
#endif
#include <string.h>
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#include <unistd.h>
#include <strings.h>
#endif
#if defined(MBEDTLS_THREADING_C) && defined(MBEDTLS_THREADING_PTHREAD) && \
defined(MBEDTLS_TEST_HOOKS)
#include "mbedtls/threading.h"
#define MBEDTLS_TEST_MUTEX_USAGE
#endif
/*
* Define the two macros
*
* #define TEST_CF_SECRET(ptr, size)
* #define TEST_CF_PUBLIC(ptr, size)
*
* that can be used in tests to mark a memory area as secret (no branch or
* memory access should depend on it) or public (default, only needs to be
* marked explicitly when it was derived from secret data).
*
* Arguments:
* - ptr: a pointer to the memory area to be marked
* - size: the size in bytes of the memory area
*
* Implementation:
* The basic idea is that of ctgrind <https://github.com/agl/ctgrind>: we can
* re-use tools that were designed for checking use of uninitialized memory.
* This file contains two implementations: one based on MemorySanitizer, the
* other on valgrind's memcheck. If none of them is enabled, dummy macros that
* do nothing are defined for convenience.
*/
#if defined(MBEDTLS_TEST_CONSTANT_FLOW_MEMSAN)
#include <sanitizer/msan_interface.h>
/* Use macros to avoid messing up with origin tracking */
#define TEST_CF_SECRET __msan_allocated_memory
// void __msan_allocated_memory(const volatile void* data, size_t size);
#define TEST_CF_PUBLIC __msan_unpoison
// void __msan_unpoison(const volatile void *a, size_t size);
#elif defined(MBEDTLS_TEST_CONSTANT_FLOW_VALGRIND)
#include <valgrind/memcheck.h>
#define TEST_CF_SECRET VALGRIND_MAKE_MEM_UNDEFINED
// VALGRIND_MAKE_MEM_UNDEFINED(_qzz_addr, _qzz_len)
#define TEST_CF_PUBLIC VALGRIND_MAKE_MEM_DEFINED
// VALGRIND_MAKE_MEM_DEFINED(_qzz_addr, _qzz_len)
#else /* MBEDTLS_TEST_CONSTANT_FLOW_MEMSAN ||
MBEDTLS_TEST_CONSTANT_FLOW_VALGRIND */
#define TEST_CF_SECRET(ptr, size)
#define TEST_CF_PUBLIC(ptr, size)
#endif /* MBEDTLS_TEST_CONSTANT_FLOW_MEMSAN */
/* Type for Hex parameters */
typedef struct data_tag
{
uint8_t * x;
uint32_t len;
} data_t;
/*----------------------------------------------------------------------------*/
/* Status and error constants */
#define DEPENDENCY_SUPPORTED 0 /* Dependency supported by build */
#define KEY_VALUE_MAPPING_FOUND 0 /* Integer expression found */
#define DISPATCH_TEST_SUCCESS 0 /* Test dispatch successful */
#define KEY_VALUE_MAPPING_NOT_FOUND -1 /* Integer expression not found */
#define DEPENDENCY_NOT_SUPPORTED -2 /* Dependency not supported */
#define DISPATCH_TEST_FN_NOT_FOUND -3 /* Test function not found */
#define DISPATCH_INVALID_TEST_DATA -4 /* Invalid test parameter type.
Only int, string, binary data
and integer expressions are
allowed */
#define DISPATCH_UNSUPPORTED_SUITE -5 /* Test suite not supported by the
build */
typedef enum
{
PARAMFAIL_TESTSTATE_IDLE = 0, /* No parameter failure call test */
PARAMFAIL_TESTSTATE_PENDING, /* Test call to the parameter failure
* is pending */
PARAMFAIL_TESTSTATE_CALLED /* The test call to the parameter
* failure function has been made */
} paramfail_test_state_t;
/*----------------------------------------------------------------------------*/
/* Macros */
/**
* \brief This macro tests the expression passed to it as a test step or
* individual test in a test case.
*
* It allows a library function to return a value and return an error
* code that can be tested.
*
* When MBEDTLS_CHECK_PARAMS is enabled, calls to the parameter failure
* callback, MBEDTLS_PARAM_FAILED(), will be assumed to be a test
* failure.
*
* This macro is not suitable for negative parameter validation tests,
* as it assumes the test step will not create an error.
*
* \param TEST The test expression to be tested.
*/
#define TEST_ASSERT( TEST ) \
do { \
if( ! (TEST) ) \
{ \
test_fail( #TEST, __LINE__, __FILE__ ); \
goto exit; \
} \
} while( 0 )
/** Compare two buffers and fail the test case if they differ.
*
* This macro expands to an instruction, not an expression.
* It may jump to the \c exit label.
*
* \param p1 Pointer to the start of the first buffer.
* \param size1 Size of the first buffer in bytes.
* This expression may be evaluated multiple times.
* \param p2 Pointer to the start of the second buffer.
* \param size2 Size of the second buffer in bytes.
* This expression may be evaluated multiple times.
*/
#define ASSERT_COMPARE( p1, size1, p2, size2 ) \
do \
{ \
TEST_ASSERT( ( size1 ) == ( size2 ) ); \
if( ( size1 ) != 0 ) \
TEST_ASSERT( memcmp( ( p1 ), ( p2 ), ( size1 ) ) == 0 ); \
} \
while( 0 )
/**
* \brief This macro tests the expression passed to it and skips the
* running test if it doesn't evaluate to 'true'.
*
* \param TEST The test expression to be tested.
*/
#define TEST_ASSUME( TEST ) \
do { \
if( ! (TEST) ) \
{ \
test_skip( #TEST, __LINE__, __FILE__ ); \
goto exit; \
} \
} while( 0 )
#if defined(MBEDTLS_CHECK_PARAMS) && !defined(MBEDTLS_PARAM_FAILED_ALT)
/**
* \brief This macro tests the statement passed to it as a test step or
* individual test in a test case. The macro assumes the test will fail
* and will generate an error.
*
* It allows a library function to return a value and tests the return
* code on return to confirm the given error code was returned.
*
* When MBEDTLS_CHECK_PARAMS is enabled, calls to the parameter failure
* callback, MBEDTLS_PARAM_FAILED(), are assumed to indicate the
* expected failure, and the test will pass.
*
* This macro is intended for negative parameter validation tests,
* where the failing function may return an error value or call
* MBEDTLS_PARAM_FAILED() to indicate the error.
*
* \param PARAM_ERROR_VALUE The expected error code.
*
* \param TEST The test expression to be tested.
*/
#define TEST_INVALID_PARAM_RET( PARAM_ERR_VALUE, TEST ) \
do { \
test_info.paramfail_test_state = PARAMFAIL_TESTSTATE_PENDING; \
if( (TEST) != (PARAM_ERR_VALUE) || \
test_info.paramfail_test_state != PARAMFAIL_TESTSTATE_CALLED ) \
{ \
test_fail( #TEST, __LINE__, __FILE__ ); \
goto exit; \
} \
} while( 0 )
/**
* \brief This macro tests the statement passed to it as a test step or
* individual test in a test case. The macro assumes the test will fail
* and will generate an error.
*
* It assumes the library function under test cannot return a value and
* assumes errors can only be indicated byt calls to
* MBEDTLS_PARAM_FAILED().
*
* When MBEDTLS_CHECK_PARAMS is enabled, calls to the parameter failure
* callback, MBEDTLS_PARAM_FAILED(), are assumed to indicate the
* expected failure. If MBEDTLS_CHECK_PARAMS is not enabled, no test
* can be made.
*
* This macro is intended for negative parameter validation tests,
* where the failing function can only return an error by calling
* MBEDTLS_PARAM_FAILED() to indicate the error.
*
* \param TEST The test expression to be tested.
*/
#define TEST_INVALID_PARAM( TEST ) \
do { \
memcpy(jmp_tmp, param_fail_jmp, sizeof(jmp_buf)); \
if( setjmp( param_fail_jmp ) == 0 ) \
{ \
TEST; \
test_fail( #TEST, __LINE__, __FILE__ ); \
goto exit; \
} \
memcpy(param_fail_jmp, jmp_tmp, sizeof(jmp_buf)); \
} while( 0 )
#endif /* MBEDTLS_CHECK_PARAMS && !MBEDTLS_PARAM_FAILED_ALT */
/**
* \brief This macro tests the statement passed to it as a test step or
* individual test in a test case. The macro assumes the test will not fail.
*
* It assumes the library function under test cannot return a value and
* assumes errors can only be indicated by calls to
* MBEDTLS_PARAM_FAILED().
*
* When MBEDTLS_CHECK_PARAMS is enabled, calls to the parameter failure
* callback, MBEDTLS_PARAM_FAILED(), are assumed to indicate the
* expected failure. If MBEDTLS_CHECK_PARAMS is not enabled, no test
* can be made.
*
* This macro is intended to test that functions returning void
* accept all of the parameter values they're supposed to accept - eg
* that they don't call MBEDTLS_PARAM_FAILED() when a parameter
* that's allowed to be NULL happens to be NULL.
*
* Note: for functions that return something other that void,
* checking that they accept all the parameters they're supposed to
* accept is best done by using TEST_ASSERT() and checking the return
* value as well.
*
* Note: this macro is available even when #MBEDTLS_CHECK_PARAMS is
* disabled, as it makes sense to check that the functions accept all
* legal values even if this option is disabled - only in that case,
* the test is more about whether the function segfaults than about
* whether it invokes MBEDTLS_PARAM_FAILED().
*
* \param TEST The test expression to be tested.
*/
#define TEST_VALID_PARAM( TEST ) \
TEST_ASSERT( ( TEST, 1 ) );
#define TEST_HELPER_ASSERT(a) if( !( a ) ) \
{ \
mbedtls_fprintf( stderr, "Assertion Failed at %s:%d - %s\n", \
__FILE__, __LINE__, #a ); \
mbedtls_exit( 1 ); \
}
#if defined(__GNUC__)
/* Test if arg and &(arg)[0] have the same type. This is true if arg is
* an array but not if it's a pointer. */
#define IS_ARRAY_NOT_POINTER( arg ) \
( ! __builtin_types_compatible_p( __typeof__( arg ), \
__typeof__( &( arg )[0] ) ) )
#else
/* On platforms where we don't know how to implement this check,
* omit it. Oh well, a non-portable check is better than nothing. */
#define IS_ARRAY_NOT_POINTER( arg ) 1
#endif
/* A compile-time constant with the value 0. If `const_expr` is not a
* compile-time constant with a nonzero value, cause a compile-time error. */
#define STATIC_ASSERT_EXPR( const_expr ) \
( 0 && sizeof( struct { unsigned int STATIC_ASSERT : 1 - 2 * ! ( const_expr ); } ) )
/* Return the scalar value `value` (possibly promoted). This is a compile-time
* constant if `value` is. `condition` must be a compile-time constant.
* If `condition` is false, arrange to cause a compile-time error. */
#define STATIC_ASSERT_THEN_RETURN( condition, value ) \
( STATIC_ASSERT_EXPR( condition ) ? 0 : ( value ) )
#define ARRAY_LENGTH_UNSAFE( array ) \
( sizeof( array ) / sizeof( *( array ) ) )
/** Return the number of elements of a static or stack array.
*
* \param array A value of array (not pointer) type.
*
* \return The number of elements of the array.
*/
#define ARRAY_LENGTH( array ) \
( STATIC_ASSERT_THEN_RETURN( IS_ARRAY_NOT_POINTER( array ), \
ARRAY_LENGTH_UNSAFE( array ) ) )
/*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i) \
{ \
(n) = ( (uint32_t) (b)[(i) ] << 24 ) \
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
| ( (uint32_t) (b)[(i) + 3] ); \
}
#endif
#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i) \
{ \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
}
#endif
/*----------------------------------------------------------------------------*/
/* Global variables */
typedef enum
{
TEST_RESULT_SUCCESS = 0,
TEST_RESULT_FAILED,
TEST_RESULT_SKIPPED
} test_result_t;
static struct
{
paramfail_test_state_t paramfail_test_state;
test_result_t result;
const char *test;
const char *filename;
int line_no;
#if defined(MBEDTLS_TEST_MUTEX_USAGE)
const char *mutex_usage_error;
#endif
}
test_info;
#if defined(MBEDTLS_PLATFORM_C)
mbedtls_platform_context platform_ctx;
#endif
#if defined(MBEDTLS_CHECK_PARAMS)
jmp_buf param_fail_jmp;
jmp_buf jmp_tmp;
#endif
/*----------------------------------------------------------------------------*/
/* Helper flags for complex dependencies */
/* Indicates whether we expect mbedtls_entropy_init
* to initialize some strong entropy source. */
#if defined(MBEDTLS_TEST_NULL_ENTROPY) || \
( !defined(MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES) && \
( !defined(MBEDTLS_NO_PLATFORM_ENTROPY) || \
defined(MBEDTLS_HAVEGE_C) || \
defined(MBEDTLS_ENTROPY_HARDWARE_ALT) || \
defined(ENTROPY_NV_SEED) ) )
#define ENTROPY_HAVE_STRONG
#endif
/*----------------------------------------------------------------------------*/
/* Helper Functions */
void test_fail( const char *test, int line_no, const char* filename )
{
if( test_info.result == TEST_RESULT_FAILED )
{
/* We've already recorded the test as having failed. Don't
* overwrite any previous information about the failure. */
return;
}
test_info.result = TEST_RESULT_FAILED;
test_info.test = test;
test_info.line_no = line_no;
test_info.filename = filename;
}
void test_skip( const char *test, int line_no, const char* filename )
{
test_info.result = TEST_RESULT_SKIPPED;
test_info.test = test;
test_info.line_no = line_no;
test_info.filename = filename;
}
static int platform_setup()
{
int ret = 0;
#if defined(MBEDTLS_PLATFORM_C)
ret = mbedtls_platform_setup( &platform_ctx );
#endif /* MBEDTLS_PLATFORM_C */
return( ret );
}
static void platform_teardown()
{
#if defined(MBEDTLS_PLATFORM_C)
mbedtls_platform_teardown( &platform_ctx );
#endif /* MBEDTLS_PLATFORM_C */
}
#if defined(MBEDTLS_CHECK_PARAMS)
void mbedtls_param_failed( const char *failure_condition,
const char *file,
int line )
{
/* If we are testing the callback function... */
if( test_info.paramfail_test_state == PARAMFAIL_TESTSTATE_PENDING )
{
test_info.paramfail_test_state = PARAMFAIL_TESTSTATE_CALLED;
}
else
{
/* ...else we treat this as an error */
/* Record the location of the failure, but not as a failure yet, in case
* it was part of the test */
test_fail( failure_condition, line, file );
test_info.result = TEST_RESULT_SUCCESS;
longjmp( param_fail_jmp, 1 );
}
}
#endif
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
static int redirect_output( FILE* out_stream, const char* path )
{
int out_fd, dup_fd;
FILE* path_stream;
out_fd = fileno( out_stream );
dup_fd = dup( out_fd );
if( dup_fd == -1 )
{
return( -1 );
}
path_stream = fopen( path, "w" );
if( path_stream == NULL )
{
close( dup_fd );
return( -1 );
}
fflush( out_stream );
if( dup2( fileno( path_stream ), out_fd ) == -1 )
{
close( dup_fd );
fclose( path_stream );
return( -1 );
}
fclose( path_stream );
return( dup_fd );
}
static int restore_output( FILE* out_stream, int dup_fd )
{
int out_fd = fileno( out_stream );
fflush( out_stream );
if( dup2( dup_fd, out_fd ) == -1 )
{
close( out_fd );
close( dup_fd );
return( -1 );
}
close( dup_fd );
return( 0 );
}
#endif /* __unix__ || __APPLE__ __MACH__ */
int mbedtls_test_unhexify( unsigned char *obuf, const char *ibuf )
{
unsigned char c, c2;
int len = strlen( ibuf ) / 2;
TEST_HELPER_ASSERT( strlen( ibuf ) % 2 == 0 ); /* must be even number of bytes */
while( *ibuf != 0 )
{
c = *ibuf++;
if( c >= '0' && c <= '9' )
c -= '0';
else if( c >= 'a' && c <= 'f' )
c -= 'a' - 10;
else if( c >= 'A' && c <= 'F' )
c -= 'A' - 10;
else
TEST_HELPER_ASSERT( 0 );
c2 = *ibuf++;
if( c2 >= '0' && c2 <= '9' )
c2 -= '0';
else if( c2 >= 'a' && c2 <= 'f' )
c2 -= 'a' - 10;
else if( c2 >= 'A' && c2 <= 'F' )
c2 -= 'A' - 10;
else
TEST_HELPER_ASSERT( 0 );
*obuf++ = ( c << 4 ) | c2;
}
return len;
}
void mbedtls_test_hexify( unsigned char *obuf, const unsigned char *ibuf, int len )
{
unsigned char l, h;
while( len != 0 )
{
h = *ibuf / 16;
l = *ibuf % 16;
if( h < 10 )
*obuf++ = '0' + h;
else
*obuf++ = 'a' + h - 10;
if( l < 10 )
*obuf++ = '0' + l;
else
*obuf++ = 'a' + l - 10;
++ibuf;
len--;
}
}
/**
* Allocate and zeroize a buffer.
*
* If the size if zero, a pointer to a zeroized 1-byte buffer is returned.
*
* For convenience, dies if allocation fails.
*/
static unsigned char *zero_alloc( size_t len )
{
void *p;
size_t actual_len = ( len != 0 ) ? len : 1;
p = mbedtls_calloc( 1, actual_len );
TEST_HELPER_ASSERT( p != NULL );
memset( p, 0x00, actual_len );
return( p );
}
/**
* Allocate and fill a buffer from hex data.
*
* The buffer is sized exactly as needed. This allows to detect buffer
* overruns (including overreads) when running the test suite under valgrind.
*
* If the size if zero, a pointer to a zeroized 1-byte buffer is returned.
*
* For convenience, dies if allocation fails.
*/
unsigned char *unhexify_alloc( const char *ibuf, size_t *olen )
{
unsigned char *obuf;
*olen = strlen( ibuf ) / 2;
if( *olen == 0 )
return( zero_alloc( *olen ) );
obuf = mbedtls_calloc( 1, *olen );
TEST_HELPER_ASSERT( obuf != NULL );
(void) mbedtls_test_unhexify( obuf, ibuf );
return( obuf );
}
/**
* This function just returns data from rand().
* Although predictable and often similar on multiple
* runs, this does not result in identical random on
* each run. So do not use this if the results of a
* test depend on the random data that is generated.
*
* rng_state shall be NULL.
*/
static int rnd_std_rand( void *rng_state, unsigned char *output, size_t len )
{
#if !defined(__OpenBSD__) && !defined(__NetBSD__)
size_t i;
if( rng_state != NULL )
rng_state = NULL;
for( i = 0; i < len; ++i )
output[i] = rand();
#else
if( rng_state != NULL )
rng_state = NULL;
arc4random_buf( output, len );
#endif /* !OpenBSD && !NetBSD */
return( 0 );
}
/**
* This function only returns zeros
*
* rng_state shall be NULL.
*/
int rnd_zero_rand( void *rng_state, unsigned char *output, size_t len )
{
if( rng_state != NULL )
rng_state = NULL;
memset( output, 0, len );
return( 0 );
}
typedef struct
{
unsigned char *buf;
size_t length;
} rnd_buf_info;
/**
* This function returns random based on a buffer it receives.
*
* rng_state shall be a pointer to a rnd_buf_info structure.
*
* The number of bytes released from the buffer on each call to
* the random function is specified by per_call. (Can be between
* 1 and 4)
*
* After the buffer is empty it will return rand();
*/
int rnd_buffer_rand( void *rng_state, unsigned char *output, size_t len )
{
rnd_buf_info *info = (rnd_buf_info *) rng_state;
size_t use_len;
if( rng_state == NULL )
return( rnd_std_rand( NULL, output, len ) );
use_len = len;
if( len > info->length )
use_len = info->length;
if( use_len )
{
memcpy( output, info->buf, use_len );
info->buf += use_len;
info->length -= use_len;
}
if( len - use_len > 0 )
return( rnd_std_rand( NULL, output + use_len, len - use_len ) );
return( 0 );
}
/**
* Info structure for the pseudo random function
*
* Key should be set at the start to a test-unique value.
* Do not forget endianness!
* State( v0, v1 ) should be set to zero.
*/
typedef struct
{
uint32_t key[16];
uint32_t v0, v1;
} rnd_pseudo_info;
/**
* This function returns random based on a pseudo random function.
* This means the results should be identical on all systems.
* Pseudo random is based on the XTEA encryption algorithm to
* generate pseudorandom.
*
* rng_state shall be a pointer to a rnd_pseudo_info structure.
*/
int rnd_pseudo_rand( void *rng_state, unsigned char *output, size_t len )
{
rnd_pseudo_info *info = (rnd_pseudo_info *) rng_state;
uint32_t i, *k, sum, delta=0x9E3779B9;
unsigned char result[4], *out = output;
if( rng_state == NULL )
return( rnd_std_rand( NULL, output, len ) );
k = info->key;
while( len > 0 )
{
size_t use_len = ( len > 4 ) ? 4 : len;
sum = 0;
for( i = 0; i < 32; i++ )
{
info->v0 += ( ( ( info->v1 << 4 ) ^ ( info->v1 >> 5 ) )
+ info->v1 ) ^ ( sum + k[sum & 3] );
sum += delta;
info->v1 += ( ( ( info->v0 << 4 ) ^ ( info->v0 >> 5 ) )
+ info->v0 ) ^ ( sum + k[( sum>>11 ) & 3] );
}
PUT_UINT32_BE( info->v0, result, 0 );
memcpy( out, result, use_len );
len -= use_len;
out += 4;
}
return( 0 );
}
int mbedtls_test_hexcmp( uint8_t * a, uint8_t * b, uint32_t a_len, uint32_t b_len )
{
int ret = 0;
uint32_t i = 0;
if( a_len != b_len )
return( -1 );
for( i = 0; i < a_len; i++ )
{
if( a[i] != b[i] )
{
ret = -1;
break;
}
}
return ret;
}
#if defined(MBEDTLS_TEST_MUTEX_USAGE)
/** Mutex usage verification framework.
*
* The mutex usage verification code below aims to detect bad usage of
* Mbed TLS's mutex abstraction layer at runtime. Note that this is solely
* about the use of the mutex itself, not about checking whether the mutex
* correctly protects whatever it is supposed to protect.
*
* The normal usage of a mutex is:
* ```
* digraph mutex_states {
* "UNINITIALIZED"; // the initial state
* "IDLE";
* "FREED";
* "LOCKED";
* "UNINITIALIZED" -> "IDLE" [label="init"];
* "FREED" -> "IDLE" [label="init"];
* "IDLE" -> "LOCKED" [label="lock"];
* "LOCKED" -> "IDLE" [label="unlock"];
* "IDLE" -> "FREED" [label="free"];
* }
* ```
*
* All bad transitions that can be unambiguously detected are reported.
* An attempt to use an uninitialized mutex cannot be detected in general
* since the memory content may happen to denote a valid state. For the same
* reason, a double init cannot be detected.
* All-bits-zero is the state of a freed mutex, which is distinct from an
* initialized mutex, so attempting to use zero-initialized memory as a mutex
* without calling the init function is detected.
*
* The framework attempts to detect missing calls to init and free by counting
* calls to init and free. If there are more calls to init than free, this
* means that a mutex is not being freed somewhere, which is a memory leak
* on platforms where a mutex consumes resources other than the
* mbedtls_threading_mutex_t object itself. If there are more calls to free
* than init, this indicates a missing init, which is likely to be detected
* by an attempt to lock the mutex as well. A limitation of this framework is
* that it cannot detect scenarios where there is exactly the same number of
* calls to init and free but the calls don't match. A bug like this is
* unlikely happen uniformly throughout the whole test suite though.
*
* If an error is detected, this framework will report what happened and the
* test case will be marked as failed. Unfortunately, the error report cannot
* indicate the exact location of the problematic call. To locate the error,
* use a debugger and set a breakpoint on mbedtls_test_mutex_usage_error().
*/
enum value_of_mutex_is_valid_field
{
/* Potential values for the is_valid field of mbedtls_threading_mutex_t.
* Note that MUTEX_FREED must be 0 and MUTEX_IDLE must be 1 for
* compatibility with threading_mutex_init_pthread() and
* threading_mutex_free_pthread(). MUTEX_LOCKED could be any nonzero
* value. */
MUTEX_FREED = 0, //!< Set by threading_mutex_free_pthread
MUTEX_IDLE = 1, //!< Set by threading_mutex_init_pthread and by our unlock
MUTEX_LOCKED = 2, //!< Set by our lock
};
typedef struct
{
void (*init)( mbedtls_threading_mutex_t * );
void (*free)( mbedtls_threading_mutex_t * );
int (*lock)( mbedtls_threading_mutex_t * );
int (*unlock)( mbedtls_threading_mutex_t * );
} mutex_functions_t;
static mutex_functions_t mutex_functions;
/** The total number of calls to mbedtls_mutex_init(), minus the total number
* of calls to mbedtls_mutex_free().
*
* Reset to 0 after each test case.
*/
static int live_mutexes;
static void mbedtls_test_mutex_usage_error( mbedtls_threading_mutex_t *mutex,
const char *msg )
{
(void) mutex;
if( test_info.mutex_usage_error == NULL )
test_info.mutex_usage_error = msg;
mbedtls_fprintf( stdout, "[mutex: %s] ", msg );
/* Don't mark the test as failed yet. This way, if the test fails later
* for a functional reason, the test framework will report the message
* and location for this functional reason. If the test passes,
* mbedtls_test_mutex_usage_check() will mark it as failed. */
}
static void mbedtls_test_wrap_mutex_init( mbedtls_threading_mutex_t *mutex )
{
mutex_functions.init( mutex );
if( mutex->is_valid )
++live_mutexes;
}
static void mbedtls_test_wrap_mutex_free( mbedtls_threading_mutex_t *mutex )
{
switch( mutex->is_valid )
{
case MUTEX_FREED:
mbedtls_test_mutex_usage_error( mutex, "free without init or double free" );
break;
case MUTEX_IDLE:
/* Do nothing. The underlying free function will reset is_valid
* to 0. */
break;
case MUTEX_LOCKED:
mbedtls_test_mutex_usage_error( mutex, "free without unlock" );
break;
default:
mbedtls_test_mutex_usage_error( mutex, "corrupted state" );
break;
}
if( mutex->is_valid )
--live_mutexes;
mutex_functions.free( mutex );
}
static int mbedtls_test_wrap_mutex_lock( mbedtls_threading_mutex_t *mutex )
{
int ret = mutex_functions.lock( mutex );
switch( mutex->is_valid )
{
case MUTEX_FREED:
mbedtls_test_mutex_usage_error( mutex, "lock without init" );
break;
case MUTEX_IDLE:
if( ret == 0 )
mutex->is_valid = 2;
break;
case MUTEX_LOCKED:
mbedtls_test_mutex_usage_error( mutex, "double lock" );
break;
default:
mbedtls_test_mutex_usage_error( mutex, "corrupted state" );
break;
}
return( ret );
}
static int mbedtls_test_wrap_mutex_unlock( mbedtls_threading_mutex_t *mutex )
{
int ret = mutex_functions.unlock( mutex );
switch( mutex->is_valid )
{
case MUTEX_FREED:
mbedtls_test_mutex_usage_error( mutex, "unlock without init" );
break;
case MUTEX_IDLE:
mbedtls_test_mutex_usage_error( mutex, "unlock without lock" );
break;
case MUTEX_LOCKED:
if( ret == 0 )
mutex->is_valid = MUTEX_IDLE;
break;
default:
mbedtls_test_mutex_usage_error( mutex, "corrupted state" );
break;
}
return( ret );
}
static void mbedtls_test_mutex_usage_init( void )
{
mutex_functions.init = mbedtls_mutex_init;
mutex_functions.free = mbedtls_mutex_free;
mutex_functions.lock = mbedtls_mutex_lock;
mutex_functions.unlock = mbedtls_mutex_unlock;
mbedtls_mutex_init = &mbedtls_test_wrap_mutex_init;
mbedtls_mutex_free = &mbedtls_test_wrap_mutex_free;
mbedtls_mutex_lock = &mbedtls_test_wrap_mutex_lock;
mbedtls_mutex_unlock = &mbedtls_test_wrap_mutex_unlock;
}
static void mbedtls_test_mutex_usage_check( void )
{
if( live_mutexes != 0 )
{
/* A positive number (more init than free) means that a mutex resource
* is leaking (on platforms where a mutex consumes more than the
* mbedtls_threading_mutex_t object itself). The rare case of a
* negative number means a missing init somewhere. */
mbedtls_fprintf( stdout, "[mutex: %d leaked] ", live_mutexes );
live_mutexes = 0;
if( test_info.mutex_usage_error == NULL )
test_info.mutex_usage_error = "missing free";
}
if( test_info.mutex_usage_error != NULL &&
test_info.result != TEST_RESULT_FAILED )
{
/* Functionally, the test passed. But there was a mutex usage error,
* so mark the test as failed after all. */
test_fail( "Mutex usage error", __LINE__, __FILE__ );
}
test_info.mutex_usage_error = NULL;
}
#endif /* MBEDTLS_TEST_MUTEX_USAGE */