mirror of
https://github.com/yuzu-emu/mbedtls.git
synced 2024-11-30 12:34:22 +01:00
a63b20d28b
This brings them in line with PSA Crypto API 1.0.0 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH -> PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG PSA_ALG_AEAD_WITH_TAG_LENGTH -> PSA_ALG_AEAD_WITH_SHORTENED_TAG Signed-off-by: Bence Szépkúti <bence.szepkuti@arm.com>
1922 lines
80 KiB
C
1922 lines
80 KiB
C
/**
|
|
* \file psa/crypto_values.h
|
|
*
|
|
* \brief PSA cryptography module: macros to build and analyze integer values.
|
|
*
|
|
* \note This file may not be included directly. Applications must
|
|
* include psa/crypto.h. Drivers must include the appropriate driver
|
|
* header file.
|
|
*
|
|
* This file contains portable definitions of macros to build and analyze
|
|
* values of integral types that encode properties of cryptographic keys,
|
|
* designations of cryptographic algorithms, and error codes returned by
|
|
* the library.
|
|
*
|
|
* This header file only defines preprocessor macros.
|
|
*/
|
|
/*
|
|
* Copyright The Mbed TLS Contributors
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef PSA_CRYPTO_VALUES_H
|
|
#define PSA_CRYPTO_VALUES_H
|
|
|
|
/** \defgroup error Error codes
|
|
* @{
|
|
*/
|
|
|
|
/* PSA error codes */
|
|
|
|
/** The action was completed successfully. */
|
|
#define PSA_SUCCESS ((psa_status_t)0)
|
|
|
|
/** An error occurred that does not correspond to any defined
|
|
* failure cause.
|
|
*
|
|
* Implementations may use this error code if none of the other standard
|
|
* error codes are applicable. */
|
|
#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
|
|
|
|
/** The requested operation or a parameter is not supported
|
|
* by this implementation.
|
|
*
|
|
* Implementations should return this error code when an enumeration
|
|
* parameter such as a key type, algorithm, etc. is not recognized.
|
|
* If a combination of parameters is recognized and identified as
|
|
* not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
|
|
#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
|
|
|
|
/** The requested action is denied by a policy.
|
|
*
|
|
* Implementations should return this error code when the parameters
|
|
* are recognized as valid and supported, and a policy explicitly
|
|
* denies the requested operation.
|
|
*
|
|
* If a subset of the parameters of a function call identify a
|
|
* forbidden operation, and another subset of the parameters are
|
|
* not valid or not supported, it is unspecified whether the function
|
|
* returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
|
|
* #PSA_ERROR_INVALID_ARGUMENT. */
|
|
#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
|
|
|
|
/** An output buffer is too small.
|
|
*
|
|
* Applications can call the \c PSA_xxx_SIZE macro listed in the function
|
|
* description to determine a sufficient buffer size.
|
|
*
|
|
* Implementations should preferably return this error code only
|
|
* in cases when performing the operation with a larger output
|
|
* buffer would succeed. However implementations may return this
|
|
* error if a function has invalid or unsupported parameters in addition
|
|
* to the parameters that determine the necessary output buffer size. */
|
|
#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
|
|
|
|
/** Asking for an item that already exists
|
|
*
|
|
* Implementations should return this error, when attempting
|
|
* to write an item (like a key) that already exists. */
|
|
#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
|
|
|
|
/** Asking for an item that doesn't exist
|
|
*
|
|
* Implementations should return this error, if a requested item (like
|
|
* a key) does not exist. */
|
|
#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
|
|
|
|
/** The requested action cannot be performed in the current state.
|
|
*
|
|
* Multipart operations return this error when one of the
|
|
* functions is called out of sequence. Refer to the function
|
|
* descriptions for permitted sequencing of functions.
|
|
*
|
|
* Implementations shall not return this error code to indicate
|
|
* that a key either exists or not,
|
|
* but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
|
|
* as applicable.
|
|
*
|
|
* Implementations shall not return this error code to indicate that a
|
|
* key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
|
|
* instead. */
|
|
#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
|
|
|
|
/** The parameters passed to the function are invalid.
|
|
*
|
|
* Implementations may return this error any time a parameter or
|
|
* combination of parameters are recognized as invalid.
|
|
*
|
|
* Implementations shall not return this error code to indicate that a
|
|
* key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
|
|
* instead.
|
|
*/
|
|
#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
|
|
|
|
/** There is not enough runtime memory.
|
|
*
|
|
* If the action is carried out across multiple security realms, this
|
|
* error can refer to available memory in any of the security realms. */
|
|
#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
|
|
|
|
/** There is not enough persistent storage.
|
|
*
|
|
* Functions that modify the key storage return this error code if
|
|
* there is insufficient storage space on the host media. In addition,
|
|
* many functions that do not otherwise access storage may return this
|
|
* error code if the implementation requires a mandatory log entry for
|
|
* the requested action and the log storage space is full. */
|
|
#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
|
|
|
|
/** There was a communication failure inside the implementation.
|
|
*
|
|
* This can indicate a communication failure between the application
|
|
* and an external cryptoprocessor or between the cryptoprocessor and
|
|
* an external volatile or persistent memory. A communication failure
|
|
* may be transient or permanent depending on the cause.
|
|
*
|
|
* \warning If a function returns this error, it is undetermined
|
|
* whether the requested action has completed or not. Implementations
|
|
* should return #PSA_SUCCESS on successful completion whenever
|
|
* possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
|
|
* if the requested action was completed successfully in an external
|
|
* cryptoprocessor but there was a breakdown of communication before
|
|
* the cryptoprocessor could report the status to the application.
|
|
*/
|
|
#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
|
|
|
|
/** There was a storage failure that may have led to data loss.
|
|
*
|
|
* This error indicates that some persistent storage is corrupted.
|
|
* It should not be used for a corruption of volatile memory
|
|
* (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
|
|
* between the cryptoprocessor and its external storage (use
|
|
* #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
|
|
* in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
|
|
*
|
|
* Note that a storage failure does not indicate that any data that was
|
|
* previously read is invalid. However this previously read data may no
|
|
* longer be readable from storage.
|
|
*
|
|
* When a storage failure occurs, it is no longer possible to ensure
|
|
* the global integrity of the keystore. Depending on the global
|
|
* integrity guarantees offered by the implementation, access to other
|
|
* data may or may not fail even if the data is still readable but
|
|
* its integrity cannot be guaranteed.
|
|
*
|
|
* Implementations should only use this error code to report a
|
|
* permanent storage corruption. However application writers should
|
|
* keep in mind that transient errors while reading the storage may be
|
|
* reported using this error code. */
|
|
#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
|
|
|
|
/** A hardware failure was detected.
|
|
*
|
|
* A hardware failure may be transient or permanent depending on the
|
|
* cause. */
|
|
#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
|
|
|
|
/** A tampering attempt was detected.
|
|
*
|
|
* If an application receives this error code, there is no guarantee
|
|
* that previously accessed or computed data was correct and remains
|
|
* confidential. Applications should not perform any security function
|
|
* and should enter a safe failure state.
|
|
*
|
|
* Implementations may return this error code if they detect an invalid
|
|
* state that cannot happen during normal operation and that indicates
|
|
* that the implementation's security guarantees no longer hold. Depending
|
|
* on the implementation architecture and on its security and safety goals,
|
|
* the implementation may forcibly terminate the application.
|
|
*
|
|
* This error code is intended as a last resort when a security breach
|
|
* is detected and it is unsure whether the keystore data is still
|
|
* protected. Implementations shall only return this error code
|
|
* to report an alarm from a tampering detector, to indicate that
|
|
* the confidentiality of stored data can no longer be guaranteed,
|
|
* or to indicate that the integrity of previously returned data is now
|
|
* considered compromised. Implementations shall not use this error code
|
|
* to indicate a hardware failure that merely makes it impossible to
|
|
* perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
|
|
* #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
|
|
* #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
|
|
* instead).
|
|
*
|
|
* This error indicates an attack against the application. Implementations
|
|
* shall not return this error code as a consequence of the behavior of
|
|
* the application itself. */
|
|
#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
|
|
|
|
/** There is not enough entropy to generate random data needed
|
|
* for the requested action.
|
|
*
|
|
* This error indicates a failure of a hardware random generator.
|
|
* Application writers should note that this error can be returned not
|
|
* only by functions whose purpose is to generate random data, such
|
|
* as key, IV or nonce generation, but also by functions that execute
|
|
* an algorithm with a randomized result, as well as functions that
|
|
* use randomization of intermediate computations as a countermeasure
|
|
* to certain attacks.
|
|
*
|
|
* Implementations should avoid returning this error after psa_crypto_init()
|
|
* has succeeded. Implementations should generate sufficient
|
|
* entropy during initialization and subsequently use a cryptographically
|
|
* secure pseudorandom generator (PRNG). However implementations may return
|
|
* this error at any time if a policy requires the PRNG to be reseeded
|
|
* during normal operation. */
|
|
#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
|
|
|
|
/** The signature, MAC or hash is incorrect.
|
|
*
|
|
* Verification functions return this error if the verification
|
|
* calculations completed successfully, and the value to be verified
|
|
* was determined to be incorrect.
|
|
*
|
|
* If the value to verify has an invalid size, implementations may return
|
|
* either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
|
|
#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
|
|
|
|
/** The decrypted padding is incorrect.
|
|
*
|
|
* \warning In some protocols, when decrypting data, it is essential that
|
|
* the behavior of the application does not depend on whether the padding
|
|
* is correct, down to precise timing. Applications should prefer
|
|
* protocols that use authenticated encryption rather than plain
|
|
* encryption. If the application must perform a decryption of
|
|
* unauthenticated data, the application writer should take care not
|
|
* to reveal whether the padding is invalid.
|
|
*
|
|
* Implementations should strive to make valid and invalid padding
|
|
* as close as possible to indistinguishable to an external observer.
|
|
* In particular, the timing of a decryption operation should not
|
|
* depend on the validity of the padding. */
|
|
#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
|
|
|
|
/** Return this error when there's insufficient data when attempting
|
|
* to read from a resource. */
|
|
#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
|
|
|
|
/** The key identifier is not valid. See also :ref:\`key-handles\`.
|
|
*/
|
|
#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
|
|
|
|
/** Stored data has been corrupted.
|
|
*
|
|
* This error indicates that some persistent storage has suffered corruption.
|
|
* It does not indicate the following situations, which have specific error
|
|
* codes:
|
|
*
|
|
* - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
|
|
* - A communication error between the cryptoprocessor and its external
|
|
* storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
|
|
* - When the storage is in a valid state but is full - use
|
|
* #PSA_ERROR_INSUFFICIENT_STORAGE.
|
|
* - When the storage fails for other reasons - use
|
|
* #PSA_ERROR_STORAGE_FAILURE.
|
|
* - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
|
|
*
|
|
* \note A storage corruption does not indicate that any data that was
|
|
* previously read is invalid. However this previously read data might no
|
|
* longer be readable from storage.
|
|
*
|
|
* When a storage failure occurs, it is no longer possible to ensure the
|
|
* global integrity of the keystore.
|
|
*/
|
|
#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
|
|
|
|
/** Data read from storage is not valid for the implementation.
|
|
*
|
|
* This error indicates that some data read from storage does not have a valid
|
|
* format. It does not indicate the following situations, which have specific
|
|
* error codes:
|
|
*
|
|
* - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
|
|
* - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
|
|
* - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
|
|
*
|
|
* This error is typically a result of either storage corruption on a
|
|
* cleartext storage backend, or an attempt to read data that was
|
|
* written by an incompatible version of the library.
|
|
*/
|
|
#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
|
|
|
|
/**@}*/
|
|
|
|
/** \defgroup crypto_types Key and algorithm types
|
|
* @{
|
|
*/
|
|
|
|
/** An invalid key type value.
|
|
*
|
|
* Zero is not the encoding of any key type.
|
|
*/
|
|
#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
|
|
|
|
/** Vendor-defined key type flag.
|
|
*
|
|
* Key types defined by this standard will never have the
|
|
* #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
|
|
* must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
|
|
* respect the bitwise structure used by standard encodings whenever practical.
|
|
*/
|
|
#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
|
|
|
|
#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
|
|
#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
|
|
#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
|
|
#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
|
|
#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
|
|
|
|
#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
|
|
|
|
/** Whether a key type is vendor-defined.
|
|
*
|
|
* See also #PSA_KEY_TYPE_VENDOR_FLAG.
|
|
*/
|
|
#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
|
|
(((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
|
|
|
|
/** Whether a key type is an unstructured array of bytes.
|
|
*
|
|
* This encompasses both symmetric keys and non-key data.
|
|
*/
|
|
#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
|
|
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
|
|
((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
|
|
|
|
/** Whether a key type is asymmetric: either a key pair or a public key. */
|
|
#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
|
|
(((type) & PSA_KEY_TYPE_CATEGORY_MASK \
|
|
& ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
|
|
PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
|
|
/** Whether a key type is the public part of a key pair. */
|
|
#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
|
|
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
|
|
/** Whether a key type is a key pair containing a private part and a public
|
|
* part. */
|
|
#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
|
|
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
|
|
/** The key pair type corresponding to a public key type.
|
|
*
|
|
* You may also pass a key pair type as \p type, it will be left unchanged.
|
|
*
|
|
* \param type A public key type or key pair type.
|
|
*
|
|
* \return The corresponding key pair type.
|
|
* If \p type is not a public key or a key pair,
|
|
* the return value is undefined.
|
|
*/
|
|
#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
|
|
((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
|
|
/** The public key type corresponding to a key pair type.
|
|
*
|
|
* You may also pass a key pair type as \p type, it will be left unchanged.
|
|
*
|
|
* \param type A public key type or key pair type.
|
|
*
|
|
* \return The corresponding public key type.
|
|
* If \p type is not a public key or a key pair,
|
|
* the return value is undefined.
|
|
*/
|
|
#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
|
|
((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
|
|
|
|
/** Raw data.
|
|
*
|
|
* A "key" of this type cannot be used for any cryptographic operation.
|
|
* Applications may use this type to store arbitrary data in the keystore. */
|
|
#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
|
|
|
|
/** HMAC key.
|
|
*
|
|
* The key policy determines which underlying hash algorithm the key can be
|
|
* used for.
|
|
*
|
|
* HMAC keys should generally have the same size as the underlying hash.
|
|
* This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
|
|
* \c alg is the HMAC algorithm or the underlying hash algorithm. */
|
|
#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
|
|
|
|
/** A secret for key derivation.
|
|
*
|
|
* The key policy determines which key derivation algorithm the key
|
|
* can be used for.
|
|
*/
|
|
#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
|
|
|
|
/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
|
|
*
|
|
* The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
|
|
* 32 bytes (AES-256).
|
|
*/
|
|
#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
|
|
|
|
/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
|
|
*
|
|
* The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
|
|
* 24 bytes (3-key 3DES).
|
|
*
|
|
* Note that single DES and 2-key 3DES are weak and strongly
|
|
* deprecated and should only be used to decrypt legacy data. 3-key 3DES
|
|
* is weak and deprecated and should only be used in legacy protocols.
|
|
*/
|
|
#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
|
|
|
|
/** Key for a cipher, AEAD or MAC algorithm based on the
|
|
* Camellia block cipher. */
|
|
#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
|
|
|
|
/** Key for the RC4 stream cipher.
|
|
*
|
|
* Note that RC4 is weak and deprecated and should only be used in
|
|
* legacy protocols. */
|
|
#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
|
|
|
|
/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
|
|
*
|
|
* ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
|
|
*
|
|
* Implementations must support 12-byte nonces, may support 8-byte nonces,
|
|
* and should reject other sizes.
|
|
*/
|
|
#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
|
|
|
|
/** RSA public key. */
|
|
#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
|
|
/** RSA key pair (private and public key). */
|
|
#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
|
|
/** Whether a key type is an RSA key (pair or public-only). */
|
|
#define PSA_KEY_TYPE_IS_RSA(type) \
|
|
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
|
|
|
|
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
|
|
#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
|
|
#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
|
|
/** Elliptic curve key pair.
|
|
*
|
|
* \param curve A value of type ::psa_ecc_family_t that
|
|
* identifies the ECC curve to be used.
|
|
*/
|
|
#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
|
|
(PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
|
|
/** Elliptic curve public key.
|
|
*
|
|
* \param curve A value of type ::psa_ecc_family_t that
|
|
* identifies the ECC curve to be used.
|
|
*/
|
|
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
|
|
(PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
|
|
|
|
/** Whether a key type is an elliptic curve key (pair or public-only). */
|
|
#define PSA_KEY_TYPE_IS_ECC(type) \
|
|
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
|
|
~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
|
|
/** Whether a key type is an elliptic curve key pair. */
|
|
#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
|
|
(((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
|
|
PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
|
|
/** Whether a key type is an elliptic curve public key. */
|
|
#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
|
|
(((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
|
|
PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
|
|
|
|
/** Extract the curve from an elliptic curve key type. */
|
|
#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
|
|
((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
|
|
((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
|
|
0))
|
|
|
|
/** SEC Koblitz curves over prime fields.
|
|
*
|
|
* This family comprises the following curves:
|
|
* secp192k1, secp224k1, secp256k1.
|
|
* They are defined in _Standards for Efficient Cryptography_,
|
|
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
|
|
* https://www.secg.org/sec2-v2.pdf
|
|
*/
|
|
#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
|
|
|
|
/** SEC random curves over prime fields.
|
|
*
|
|
* This family comprises the following curves:
|
|
* secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
|
|
* They are defined in _Standards for Efficient Cryptography_,
|
|
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
|
|
* https://www.secg.org/sec2-v2.pdf
|
|
*/
|
|
#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
|
|
/* SECP160R2 (SEC2 v1, obsolete) */
|
|
#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
|
|
|
|
/** SEC Koblitz curves over binary fields.
|
|
*
|
|
* This family comprises the following curves:
|
|
* sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
|
|
* They are defined in _Standards for Efficient Cryptography_,
|
|
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
|
|
* https://www.secg.org/sec2-v2.pdf
|
|
*/
|
|
#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
|
|
|
|
/** SEC random curves over binary fields.
|
|
*
|
|
* This family comprises the following curves:
|
|
* sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
|
|
* They are defined in _Standards for Efficient Cryptography_,
|
|
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
|
|
* https://www.secg.org/sec2-v2.pdf
|
|
*/
|
|
#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
|
|
|
|
/** SEC additional random curves over binary fields.
|
|
*
|
|
* This family comprises the following curve:
|
|
* sect163r2.
|
|
* It is defined in _Standards for Efficient Cryptography_,
|
|
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
|
|
* https://www.secg.org/sec2-v2.pdf
|
|
*/
|
|
#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
|
|
|
|
/** Brainpool P random curves.
|
|
*
|
|
* This family comprises the following curves:
|
|
* brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
|
|
* brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
|
|
* It is defined in RFC 5639.
|
|
*/
|
|
#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
|
|
|
|
/** Curve25519 and Curve448.
|
|
*
|
|
* This family comprises the following Montgomery curves:
|
|
* - 255-bit: Bernstein et al.,
|
|
* _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
|
|
* The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
|
|
* - 448-bit: Hamburg,
|
|
* _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
|
|
* The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
|
|
*/
|
|
#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
|
|
|
|
#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
|
|
#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
|
|
#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
|
|
/** Diffie-Hellman key pair.
|
|
*
|
|
* \param group A value of type ::psa_dh_family_t that identifies the
|
|
* Diffie-Hellman group to be used.
|
|
*/
|
|
#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
|
|
(PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
|
|
/** Diffie-Hellman public key.
|
|
*
|
|
* \param group A value of type ::psa_dh_family_t that identifies the
|
|
* Diffie-Hellman group to be used.
|
|
*/
|
|
#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
|
|
(PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
|
|
|
|
/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
|
|
#define PSA_KEY_TYPE_IS_DH(type) \
|
|
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
|
|
~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
|
|
/** Whether a key type is a Diffie-Hellman key pair. */
|
|
#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
|
|
(((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
|
|
PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
|
|
/** Whether a key type is a Diffie-Hellman public key. */
|
|
#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
|
|
(((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
|
|
PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
|
|
|
|
/** Extract the group from a Diffie-Hellman key type. */
|
|
#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
|
|
((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
|
|
((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
|
|
0))
|
|
|
|
/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
|
|
*
|
|
* This family includes groups with the following key sizes (in bits):
|
|
* 2048, 3072, 4096, 6144, 8192. A given implementation may support
|
|
* all of these sizes or only a subset.
|
|
*/
|
|
#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
|
|
|
|
#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
|
|
(((type) >> 8) & 7)
|
|
/** The block size of a block cipher.
|
|
*
|
|
* \param type A cipher key type (value of type #psa_key_type_t).
|
|
*
|
|
* \return The block size for a block cipher, or 1 for a stream cipher.
|
|
* The return value is undefined if \p type is not a supported
|
|
* cipher key type.
|
|
*
|
|
* \note It is possible to build stream cipher algorithms on top of a block
|
|
* cipher, for example CTR mode (#PSA_ALG_CTR).
|
|
* This macro only takes the key type into account, so it cannot be
|
|
* used to determine the size of the data that #psa_cipher_update()
|
|
* might buffer for future processing in general.
|
|
*
|
|
* \note This macro returns a compile-time constant if its argument is one.
|
|
*
|
|
* \warning This macro may evaluate its argument multiple times.
|
|
*/
|
|
#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
|
|
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
|
|
1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
|
|
0u)
|
|
|
|
/** Vendor-defined algorithm flag.
|
|
*
|
|
* Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
|
|
* bit set. Vendors who define additional algorithms must use an encoding with
|
|
* the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
|
|
* used by standard encodings whenever practical.
|
|
*/
|
|
#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
|
|
|
|
#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
|
|
#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
|
|
#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
|
|
#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
|
|
#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
|
|
#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
|
|
#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
|
|
#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
|
|
#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
|
|
|
|
/** Whether an algorithm is vendor-defined.
|
|
*
|
|
* See also #PSA_ALG_VENDOR_FLAG.
|
|
*/
|
|
#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
|
|
(((alg) & PSA_ALG_VENDOR_FLAG) != 0)
|
|
|
|
/** Whether the specified algorithm is a hash algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a hash algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_HASH(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
|
|
|
|
/** Whether the specified algorithm is a MAC algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a MAC algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_MAC(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
|
|
|
|
/** Whether the specified algorithm is a symmetric cipher algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_CIPHER(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
|
|
|
|
/** Whether the specified algorithm is an authenticated encryption
|
|
* with associated data (AEAD) algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_AEAD(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
|
|
|
|
/** Whether the specified algorithm is an asymmetric signature algorithm,
|
|
* also known as public-key signature algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_SIGN(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
|
|
|
|
/** Whether the specified algorithm is an asymmetric encryption algorithm,
|
|
* also known as public-key encryption algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
|
|
|
|
/** Whether the specified algorithm is a key agreement algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
|
|
|
|
/** Whether the specified algorithm is a key derivation algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_KEY_DERIVATION(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
|
|
|
|
#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
|
|
/** MD2 */
|
|
#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
|
|
/** MD4 */
|
|
#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
|
|
/** MD5 */
|
|
#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
|
|
/** PSA_ALG_RIPEMD160 */
|
|
#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
|
|
/** SHA1 */
|
|
#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
|
|
/** SHA2-224 */
|
|
#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
|
|
/** SHA2-256 */
|
|
#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
|
|
/** SHA2-384 */
|
|
#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
|
|
/** SHA2-512 */
|
|
#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
|
|
/** SHA2-512/224 */
|
|
#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
|
|
/** SHA2-512/256 */
|
|
#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
|
|
/** SHA3-224 */
|
|
#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
|
|
/** SHA3-256 */
|
|
#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
|
|
/** SHA3-384 */
|
|
#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
|
|
/** SHA3-512 */
|
|
#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
|
|
|
|
/** In a hash-and-sign algorithm policy, allow any hash algorithm.
|
|
*
|
|
* This value may be used to form the algorithm usage field of a policy
|
|
* for a signature algorithm that is parametrized by a hash. The key
|
|
* may then be used to perform operations using the same signature
|
|
* algorithm parametrized with any supported hash.
|
|
*
|
|
* That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
|
|
* - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
|
|
* - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
|
|
* Then you may create and use a key as follows:
|
|
* - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
|
|
* ```
|
|
* psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
|
|
* psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
|
|
* ```
|
|
* - Import or generate key material.
|
|
* - Call psa_sign_hash() or psa_verify_hash(), passing
|
|
* an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
|
|
* call to sign or verify a message may use a different hash.
|
|
* ```
|
|
* psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
|
|
* psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
|
|
* psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
|
|
* ```
|
|
*
|
|
* This value may not be used to build other algorithms that are
|
|
* parametrized over a hash. For any valid use of this macro to build
|
|
* an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
|
|
*
|
|
* This value may not be used to build an algorithm specification to
|
|
* perform an operation. It is only valid to build policies.
|
|
*/
|
|
#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
|
|
|
|
#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
|
|
#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
|
|
/** Macro to build an HMAC algorithm.
|
|
*
|
|
* For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
*
|
|
* \return The corresponding HMAC algorithm.
|
|
* \return Unspecified if \p hash_alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_HMAC(hash_alg) \
|
|
(PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
|
|
(PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
/** Whether the specified algorithm is an HMAC algorithm.
|
|
*
|
|
* HMAC is a family of MAC algorithms that are based on a hash function.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_HMAC(alg) \
|
|
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
|
|
PSA_ALG_HMAC_BASE)
|
|
|
|
/* In the encoding of a MAC algorithm, the bits corresponding to
|
|
* PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
|
|
* truncated. As an exception, the value 0 means the untruncated algorithm,
|
|
* whatever its length is. The length is encoded in 6 bits, so it can
|
|
* reach up to 63; the largest MAC is 64 bytes so its trivial truncation
|
|
* to full length is correctly encoded as 0 and any non-trivial truncation
|
|
* is correctly encoded as a value between 1 and 63. */
|
|
#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
|
|
#define PSA_MAC_TRUNCATION_OFFSET 16
|
|
|
|
/** Macro to build a truncated MAC algorithm.
|
|
*
|
|
* A truncated MAC algorithm is identical to the corresponding MAC
|
|
* algorithm except that the MAC value for the truncated algorithm
|
|
* consists of only the first \p mac_length bytes of the MAC value
|
|
* for the untruncated algorithm.
|
|
*
|
|
* \note This macro may allow constructing algorithm identifiers that
|
|
* are not valid, either because the specified length is larger
|
|
* than the untruncated MAC or because the specified length is
|
|
* smaller than permitted by the implementation.
|
|
*
|
|
* \note It is implementation-defined whether a truncated MAC that
|
|
* is truncated to the same length as the MAC of the untruncated
|
|
* algorithm is considered identical to the untruncated algorithm
|
|
* for policy comparison purposes.
|
|
*
|
|
* \param mac_alg A MAC algorithm identifier (value of type
|
|
* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
|
|
* is true). This may be a truncated or untruncated
|
|
* MAC algorithm.
|
|
* \param mac_length Desired length of the truncated MAC in bytes.
|
|
* This must be at most the full length of the MAC
|
|
* and must be at least an implementation-specified
|
|
* minimum. The implementation-specified minimum
|
|
* shall not be zero.
|
|
*
|
|
* \return The corresponding MAC algorithm with the specified
|
|
* length.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* MAC algorithm or if \p mac_length is too small or
|
|
* too large for the specified MAC algorithm.
|
|
*/
|
|
#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
|
|
(((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
|
|
((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
|
|
|
|
/** Macro to build the base MAC algorithm corresponding to a truncated
|
|
* MAC algorithm.
|
|
*
|
|
* \param mac_alg A MAC algorithm identifier (value of type
|
|
* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
|
|
* is true). This may be a truncated or untruncated
|
|
* MAC algorithm.
|
|
*
|
|
* \return The corresponding base MAC algorithm.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* MAC algorithm.
|
|
*/
|
|
#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
|
|
((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
|
|
|
|
/** Length to which a MAC algorithm is truncated.
|
|
*
|
|
* \param mac_alg A MAC algorithm identifier (value of type
|
|
* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
|
|
* is true).
|
|
*
|
|
* \return Length of the truncated MAC in bytes.
|
|
* \return 0 if \p alg is a non-truncated MAC algorithm.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* MAC algorithm.
|
|
*/
|
|
#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
|
|
(((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
|
|
|
|
#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
|
|
/** The CBC-MAC construction over a block cipher
|
|
*
|
|
* \warning CBC-MAC is insecure in many cases.
|
|
* A more secure mode, such as #PSA_ALG_CMAC, is recommended.
|
|
*/
|
|
#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
|
|
/** The CMAC construction over a block cipher */
|
|
#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
|
|
|
|
/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
|
|
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
|
|
PSA_ALG_CIPHER_MAC_BASE)
|
|
|
|
#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
|
|
#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
|
|
|
|
/** Whether the specified algorithm is a stream cipher.
|
|
*
|
|
* A stream cipher is a symmetric cipher that encrypts or decrypts messages
|
|
* by applying a bitwise-xor with a stream of bytes that is generated
|
|
* from a key.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier or if it is not a symmetric cipher algorithm.
|
|
*/
|
|
#define PSA_ALG_IS_STREAM_CIPHER(alg) \
|
|
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
|
|
(PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
|
|
|
|
/** The stream cipher mode of a stream cipher algorithm.
|
|
*
|
|
* The underlying stream cipher is determined by the key type.
|
|
* - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
|
|
* - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
|
|
*/
|
|
#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
|
|
|
|
/** The CTR stream cipher mode.
|
|
*
|
|
* CTR is a stream cipher which is built from a block cipher.
|
|
* The underlying block cipher is determined by the key type.
|
|
* For example, to use AES-128-CTR, use this algorithm with
|
|
* a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
|
|
*/
|
|
#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
|
|
|
|
/** The CFB stream cipher mode.
|
|
*
|
|
* The underlying block cipher is determined by the key type.
|
|
*/
|
|
#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
|
|
|
|
/** The OFB stream cipher mode.
|
|
*
|
|
* The underlying block cipher is determined by the key type.
|
|
*/
|
|
#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
|
|
|
|
/** The XTS cipher mode.
|
|
*
|
|
* XTS is a cipher mode which is built from a block cipher. It requires at
|
|
* least one full block of input, but beyond this minimum the input
|
|
* does not need to be a whole number of blocks.
|
|
*/
|
|
#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
|
|
|
|
/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
|
|
*
|
|
* \warning ECB mode does not protect the confidentiality of the encrypted data
|
|
* except in extremely narrow circumstances. It is recommended that applications
|
|
* only use ECB if they need to construct an operating mode that the
|
|
* implementation does not provide. Implementations are encouraged to provide
|
|
* the modes that applications need in preference to supporting direct access
|
|
* to ECB.
|
|
*
|
|
* The underlying block cipher is determined by the key type.
|
|
*
|
|
* This symmetric cipher mode can only be used with messages whose lengths are a
|
|
* multiple of the block size of the chosen block cipher.
|
|
*
|
|
* ECB mode does not accept an initialization vector (IV). When using a
|
|
* multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
|
|
* and psa_cipher_set_iv() must not be called.
|
|
*/
|
|
#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
|
|
|
|
/** The CBC block cipher chaining mode, with no padding.
|
|
*
|
|
* The underlying block cipher is determined by the key type.
|
|
*
|
|
* This symmetric cipher mode can only be used with messages whose lengths
|
|
* are whole number of blocks for the chosen block cipher.
|
|
*/
|
|
#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
|
|
|
|
/** The CBC block cipher chaining mode with PKCS#7 padding.
|
|
*
|
|
* The underlying block cipher is determined by the key type.
|
|
*
|
|
* This is the padding method defined by PKCS#7 (RFC 2315) §10.3.
|
|
*/
|
|
#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
|
|
|
|
#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
|
|
|
|
/** Whether the specified algorithm is an AEAD mode on a block cipher.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
|
|
* a block cipher, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
|
|
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
|
|
(PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
|
|
|
|
/** The CCM authenticated encryption algorithm.
|
|
*
|
|
* The underlying block cipher is determined by the key type.
|
|
*/
|
|
#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
|
|
|
|
/** The GCM authenticated encryption algorithm.
|
|
*
|
|
* The underlying block cipher is determined by the key type.
|
|
*/
|
|
#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
|
|
|
|
/** The Chacha20-Poly1305 AEAD algorithm.
|
|
*
|
|
* The ChaCha20_Poly1305 construction is defined in RFC 7539.
|
|
*
|
|
* Implementations must support 12-byte nonces, may support 8-byte nonces,
|
|
* and should reject other sizes.
|
|
*
|
|
* Implementations must support 16-byte tags and should reject other sizes.
|
|
*/
|
|
#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
|
|
|
|
/* In the encoding of a AEAD algorithm, the bits corresponding to
|
|
* PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
|
|
* The constants for default lengths follow this encoding.
|
|
*/
|
|
#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
|
|
#define PSA_AEAD_TAG_LENGTH_OFFSET 16
|
|
|
|
/** Macro to build a shortened AEAD algorithm.
|
|
*
|
|
* A shortened AEAD algorithm is similar to the corresponding AEAD
|
|
* algorithm, but has an authentication tag that consists of fewer bytes.
|
|
* Depending on the algorithm, the tag length may affect the calculation
|
|
* of the ciphertext.
|
|
*
|
|
* \param aead_alg An AEAD algorithm identifier (value of type
|
|
* #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
|
|
* is true).
|
|
* \param tag_length Desired length of the authentication tag in bytes.
|
|
*
|
|
* \return The corresponding AEAD algorithm with the specified
|
|
* length.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* AEAD algorithm or if \p tag_length is not valid
|
|
* for the specified AEAD algorithm.
|
|
*/
|
|
#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
|
|
(((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
|
|
((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
|
|
PSA_ALG_AEAD_TAG_LENGTH_MASK))
|
|
|
|
/** Calculate the corresponding AEAD algorithm with the default tag length.
|
|
*
|
|
* \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_AEAD(\p alg) is true).
|
|
*
|
|
* \return The corresponding AEAD algorithm with the default
|
|
* tag length for that algorithm.
|
|
*/
|
|
#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
|
|
( \
|
|
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
|
|
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
|
|
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
|
|
0)
|
|
#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
|
|
PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
|
|
PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
|
|
ref :
|
|
|
|
#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
|
|
/** RSA PKCS#1 v1.5 signature with hashing.
|
|
*
|
|
* This is the signature scheme defined by RFC 8017
|
|
* (PKCS#1: RSA Cryptography Specifications) under the name
|
|
* RSASSA-PKCS1-v1_5.
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
* This includes #PSA_ALG_ANY_HASH
|
|
* when specifying the algorithm in a usage policy.
|
|
*
|
|
* \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
|
|
* \return Unspecified if \p hash_alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
|
|
(PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
/** Raw PKCS#1 v1.5 signature.
|
|
*
|
|
* The input to this algorithm is the DigestInfo structure used by
|
|
* RFC 8017 (PKCS#1: RSA Cryptography Specifications), §9.2
|
|
* steps 3–6.
|
|
*/
|
|
#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
|
|
#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
|
|
|
|
#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
|
|
/** RSA PSS signature with hashing.
|
|
*
|
|
* This is the signature scheme defined by RFC 8017
|
|
* (PKCS#1: RSA Cryptography Specifications) under the name
|
|
* RSASSA-PSS, with the message generation function MGF1, and with
|
|
* a salt length equal to the length of the hash. The specified
|
|
* hash algorithm is used to hash the input message, to create the
|
|
* salted hash, and for the mask generation.
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
* This includes #PSA_ALG_ANY_HASH
|
|
* when specifying the algorithm in a usage policy.
|
|
*
|
|
* \return The corresponding RSA PSS signature algorithm.
|
|
* \return Unspecified if \p hash_alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_RSA_PSS(hash_alg) \
|
|
(PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
#define PSA_ALG_IS_RSA_PSS(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
|
|
|
|
#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
|
|
/** ECDSA signature with hashing.
|
|
*
|
|
* This is the ECDSA signature scheme defined by ANSI X9.62,
|
|
* with a random per-message secret number (*k*).
|
|
*
|
|
* The representation of the signature as a byte string consists of
|
|
* the concatentation of the signature values *r* and *s*. Each of
|
|
* *r* and *s* is encoded as an *N*-octet string, where *N* is the length
|
|
* of the base point of the curve in octets. Each value is represented
|
|
* in big-endian order (most significant octet first).
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
* This includes #PSA_ALG_ANY_HASH
|
|
* when specifying the algorithm in a usage policy.
|
|
*
|
|
* \return The corresponding ECDSA signature algorithm.
|
|
* \return Unspecified if \p hash_alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_ECDSA(hash_alg) \
|
|
(PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
/** ECDSA signature without hashing.
|
|
*
|
|
* This is the same signature scheme as #PSA_ALG_ECDSA(), but
|
|
* without specifying a hash algorithm. This algorithm may only be
|
|
* used to sign or verify a sequence of bytes that should be an
|
|
* already-calculated hash. Note that the input is padded with
|
|
* zeros on the left or truncated on the left as required to fit
|
|
* the curve size.
|
|
*/
|
|
#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
|
|
#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
|
|
/** Deterministic ECDSA signature with hashing.
|
|
*
|
|
* This is the deterministic ECDSA signature scheme defined by RFC 6979.
|
|
*
|
|
* The representation of a signature is the same as with #PSA_ALG_ECDSA().
|
|
*
|
|
* Note that when this algorithm is used for verification, signatures
|
|
* made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
|
|
* same private key are accepted. In other words,
|
|
* #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
|
|
* #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
* This includes #PSA_ALG_ANY_HASH
|
|
* when specifying the algorithm in a usage policy.
|
|
*
|
|
* \return The corresponding deterministic ECDSA signature
|
|
* algorithm.
|
|
* \return Unspecified if \p hash_alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
|
|
(PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
|
|
#define PSA_ALG_IS_ECDSA(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
|
|
PSA_ALG_ECDSA_BASE)
|
|
#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
|
|
(((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
|
|
#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
|
|
(PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
|
|
#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
|
|
(PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
|
|
|
|
/** Whether the specified algorithm is a hash-and-sign algorithm.
|
|
*
|
|
* Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
|
|
* structured in two parts: first the calculation of a hash in a way that
|
|
* does not depend on the key, then the calculation of a signature from the
|
|
* hash value and the key.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
|
|
(PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
|
|
PSA_ALG_IS_ECDSA(alg))
|
|
|
|
/** Get the hash used by a hash-and-sign signature algorithm.
|
|
*
|
|
* A hash-and-sign algorithm is a signature algorithm which is
|
|
* composed of two phases: first a hashing phase which does not use
|
|
* the key and produces a hash of the input message, then a signing
|
|
* phase which only uses the hash and the key and not the message
|
|
* itself.
|
|
*
|
|
* \param alg A signature algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_SIGN(\p alg) is true).
|
|
*
|
|
* \return The underlying hash algorithm if \p alg is a hash-and-sign
|
|
* algorithm.
|
|
* \return 0 if \p alg is a signature algorithm that does not
|
|
* follow the hash-and-sign structure.
|
|
* \return Unspecified if \p alg is not a signature algorithm or
|
|
* if it is not supported by the implementation.
|
|
*/
|
|
#define PSA_ALG_SIGN_GET_HASH(alg) \
|
|
(PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
|
|
((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
|
|
((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
|
|
0)
|
|
|
|
/** RSA PKCS#1 v1.5 encryption.
|
|
*/
|
|
#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
|
|
|
|
#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
|
|
/** RSA OAEP encryption.
|
|
*
|
|
* This is the encryption scheme defined by RFC 8017
|
|
* (PKCS#1: RSA Cryptography Specifications) under the name
|
|
* RSAES-OAEP, with the message generation function MGF1.
|
|
*
|
|
* \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
|
|
* for MGF1.
|
|
*
|
|
* \return The corresponding RSA OAEP encryption algorithm.
|
|
* \return Unspecified if \p hash_alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_RSA_OAEP(hash_alg) \
|
|
(PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
#define PSA_ALG_IS_RSA_OAEP(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
|
|
#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
|
|
(PSA_ALG_IS_RSA_OAEP(alg) ? \
|
|
((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
|
|
0)
|
|
|
|
#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
|
|
/** Macro to build an HKDF algorithm.
|
|
*
|
|
* For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
|
|
*
|
|
* This key derivation algorithm uses the following inputs:
|
|
* - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
|
|
* It is optional; if omitted, the derivation uses an empty salt.
|
|
* - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
|
|
* - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
|
|
* You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
|
|
* You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
|
|
* starting to generate output.
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
*
|
|
* \return The corresponding HKDF algorithm.
|
|
* \return Unspecified if \p hash_alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_HKDF(hash_alg) \
|
|
(PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
/** Whether the specified algorithm is an HKDF algorithm.
|
|
*
|
|
* HKDF is a family of key derivation algorithms that are based on a hash
|
|
* function and the HMAC construction.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
* key derivation algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_HKDF(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
|
|
#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
|
|
(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
|
|
/** Macro to build a TLS-1.2 PRF algorithm.
|
|
*
|
|
* TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
|
|
* specified in Section 5 of RFC 5246. It is based on HMAC and can be
|
|
* used with either SHA-256 or SHA-384.
|
|
*
|
|
* This key derivation algorithm uses the following inputs, which must be
|
|
* passed in the order given here:
|
|
* - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
|
|
* - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
|
|
* - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
|
|
*
|
|
* For the application to TLS-1.2 key expansion, the seed is the
|
|
* concatenation of ServerHello.Random + ClientHello.Random,
|
|
* and the label is "key expansion".
|
|
*
|
|
* For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
|
|
* TLS 1.2 PRF using HMAC-SHA-256.
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
*
|
|
* \return The corresponding TLS-1.2 PRF algorithm.
|
|
* \return Unspecified if \p hash_alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_TLS12_PRF(hash_alg) \
|
|
(PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
* key derivation algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_TLS12_PRF(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
|
|
#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
|
|
(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
|
|
/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
|
|
*
|
|
* In a pure-PSK handshake in TLS 1.2, the master secret is derived
|
|
* from the PreSharedKey (PSK) through the application of padding
|
|
* (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
|
|
* The latter is based on HMAC and can be used with either SHA-256
|
|
* or SHA-384.
|
|
*
|
|
* This key derivation algorithm uses the following inputs, which must be
|
|
* passed in the order given here:
|
|
* - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
|
|
* - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
|
|
* - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
|
|
*
|
|
* For the application to TLS-1.2, the seed (which is
|
|
* forwarded to the TLS-1.2 PRF) is the concatenation of the
|
|
* ClientHello.Random + ServerHello.Random,
|
|
* and the label is "master secret" or "extended master secret".
|
|
*
|
|
* For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
|
|
* TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
*
|
|
* \return The corresponding TLS-1.2 PSK to MS algorithm.
|
|
* \return Unspecified if \p hash_alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
|
|
(PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
* key derivation algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
|
|
#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
|
|
(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
|
|
#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
|
|
|
|
/** Macro to build a combined algorithm that chains a key agreement with
|
|
* a key derivation.
|
|
*
|
|
* \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
|
|
* that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
|
|
* \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
|
|
* that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
|
|
*
|
|
* \return The corresponding key agreement and derivation
|
|
* algorithm.
|
|
* \return Unspecified if \p ka_alg is not a supported
|
|
* key agreement algorithm or \p kdf_alg is not a
|
|
* supported key derivation algorithm.
|
|
*/
|
|
#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
|
|
((ka_alg) | (kdf_alg))
|
|
|
|
#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
|
|
(((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
|
|
|
|
#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
|
|
(((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
|
|
|
|
/** Whether the specified algorithm is a raw key agreement algorithm.
|
|
*
|
|
* A raw key agreement algorithm is one that does not specify
|
|
* a key derivation function.
|
|
* Usually, raw key agreement algorithms are constructed directly with
|
|
* a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
|
|
* constructed with #PSA_ALG_KEY_AGREEMENT().
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
|
|
(PSA_ALG_IS_KEY_AGREEMENT(alg) && \
|
|
PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
|
|
|
|
#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
|
|
((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
|
|
|
|
/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
|
|
*
|
|
* The shared secret produced by key agreement is
|
|
* `g^{ab}` in big-endian format.
|
|
* It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
|
|
* in bits.
|
|
*/
|
|
#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
|
|
|
|
/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
|
|
*
|
|
* This includes the raw finite field Diffie-Hellman algorithm as well as
|
|
* finite-field Diffie-Hellman followed by any supporter key derivation
|
|
* algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
* key agreement algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_FFDH(alg) \
|
|
(PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
|
|
|
|
/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
|
|
*
|
|
* The shared secret produced by key agreement is the x-coordinate of
|
|
* the shared secret point. It is always `ceiling(m / 8)` bytes long where
|
|
* `m` is the bit size associated with the curve, i.e. the bit size of the
|
|
* order of the curve's coordinate field. When `m` is not a multiple of 8,
|
|
* the byte containing the most significant bit of the shared secret
|
|
* is padded with zero bits. The byte order is either little-endian
|
|
* or big-endian depending on the curve type.
|
|
*
|
|
* - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
|
|
* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
|
|
* in little-endian byte order.
|
|
* The bit size is 448 for Curve448 and 255 for Curve25519.
|
|
* - For Weierstrass curves over prime fields (curve types
|
|
* `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
|
|
* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
|
|
* in big-endian byte order.
|
|
* The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
|
|
* - For Weierstrass curves over binary fields (curve types
|
|
* `PSA_ECC_FAMILY_SECTXXX`),
|
|
* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
|
|
* in big-endian byte order.
|
|
* The bit size is `m` for the field `F_{2^m}`.
|
|
*/
|
|
#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
|
|
|
|
/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
|
|
* algorithm.
|
|
*
|
|
* This includes the raw elliptic curve Diffie-Hellman algorithm as well as
|
|
* elliptic curve Diffie-Hellman followed by any supporter key derivation
|
|
* algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
|
|
* 0 otherwise.
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
* key agreement algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_ECDH(alg) \
|
|
(PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
|
|
|
|
/** Whether the specified algorithm encoding is a wildcard.
|
|
*
|
|
* Wildcard values may only be used to set the usage algorithm field in
|
|
* a policy, not to perform an operation.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \c alg is a wildcard algorithm encoding.
|
|
* \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
|
|
* an operation).
|
|
* \return This macro may return either 0 or 1 if \c alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_WILDCARD(alg) \
|
|
(PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
|
|
PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
|
|
(alg) == PSA_ALG_ANY_HASH)
|
|
|
|
/**@}*/
|
|
|
|
/** \defgroup key_lifetimes Key lifetimes
|
|
* @{
|
|
*/
|
|
|
|
/** The default lifetime for volatile keys.
|
|
*
|
|
* A volatile key only exists as long as the identifier to it is not destroyed.
|
|
* The key material is guaranteed to be erased on a power reset.
|
|
*
|
|
* A key with this lifetime is typically stored in the RAM area of the
|
|
* PSA Crypto subsystem. However this is an implementation choice.
|
|
* If an implementation stores data about the key in a non-volatile memory,
|
|
* it must release all the resources associated with the key and erase the
|
|
* key material if the calling application terminates.
|
|
*/
|
|
#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
|
|
|
|
/** The default lifetime for persistent keys.
|
|
*
|
|
* A persistent key remains in storage until it is explicitly destroyed or
|
|
* until the corresponding storage area is wiped. This specification does
|
|
* not define any mechanism to wipe a storage area, but integrations may
|
|
* provide their own mechanism (for example to perform a factory reset,
|
|
* to prepare for device refurbishment, or to uninstall an application).
|
|
*
|
|
* This lifetime value is the default storage area for the calling
|
|
* application. Integrations of Mbed TLS may support other persistent lifetimes.
|
|
* See ::psa_key_lifetime_t for more information.
|
|
*/
|
|
#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
|
|
|
|
/** The persistence level of volatile keys.
|
|
*
|
|
* See ::psa_key_persistence_t for more information.
|
|
*/
|
|
#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
|
|
|
|
/** The default persistence level for persistent keys.
|
|
*
|
|
* See ::psa_key_persistence_t for more information.
|
|
*/
|
|
#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
|
|
|
|
/** A persistence level indicating that a key is never destroyed.
|
|
*
|
|
* See ::psa_key_persistence_t for more information.
|
|
*/
|
|
#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
|
|
|
|
#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
|
|
((psa_key_persistence_t)((lifetime) & 0x000000ff))
|
|
|
|
#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
|
|
((psa_key_location_t)((lifetime) >> 8))
|
|
|
|
/** Whether a key lifetime indicates that the key is volatile.
|
|
*
|
|
* A volatile key is automatically destroyed by the implementation when
|
|
* the application instance terminates. In particular, a volatile key
|
|
* is automatically destroyed on a power reset of the device.
|
|
*
|
|
* A key that is not volatile is persistent. Persistent keys are
|
|
* preserved until the application explicitly destroys them or until an
|
|
* implementation-specific device management event occurs (for example,
|
|
* a factory reset).
|
|
*
|
|
* \param lifetime The lifetime value to query (value of type
|
|
* ::psa_key_lifetime_t).
|
|
*
|
|
* \return \c 1 if the key is volatile, otherwise \c 0.
|
|
*/
|
|
#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
|
|
(PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
|
|
PSA_KEY_PERSISTENCE_VOLATILE)
|
|
|
|
/** Construct a lifetime from a persistence level and a location.
|
|
*
|
|
* \param persistence The persistence level
|
|
* (value of type ::psa_key_persistence_t).
|
|
* \param location The location indicator
|
|
* (value of type ::psa_key_location_t).
|
|
*
|
|
* \return The constructed lifetime value.
|
|
*/
|
|
#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
|
|
((location) << 8 | (persistence))
|
|
|
|
/** The local storage area for persistent keys.
|
|
*
|
|
* This storage area is available on all systems that can store persistent
|
|
* keys without delegating the storage to a third-party cryptoprocessor.
|
|
*
|
|
* See ::psa_key_location_t for more information.
|
|
*/
|
|
#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
|
|
|
|
#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
|
|
|
|
/** The minimum value for a key identifier chosen by the application.
|
|
*/
|
|
#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
|
|
/** The maximum value for a key identifier chosen by the application.
|
|
*/
|
|
#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
|
|
/** The minimum value for a key identifier chosen by the implementation.
|
|
*/
|
|
#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
|
|
/** The maximum value for a key identifier chosen by the implementation.
|
|
*/
|
|
#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
|
|
|
|
|
|
#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
|
|
|
|
#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
|
|
#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
|
|
#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
|
|
|
|
/** Utility to initialize a key identifier at runtime.
|
|
*
|
|
* \param unused Unused parameter.
|
|
* \param key_id Identifier of the key.
|
|
*/
|
|
static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
|
|
unsigned int unused, psa_key_id_t key_id )
|
|
{
|
|
(void)unused;
|
|
|
|
return( key_id );
|
|
}
|
|
|
|
/** Compare two key identifiers.
|
|
*
|
|
* \param id1 First key identifier.
|
|
* \param id2 Second key identifier.
|
|
*
|
|
* \return Non-zero if the two key identifier are equal, zero otherwise.
|
|
*/
|
|
static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
|
|
mbedtls_svc_key_id_t id2 )
|
|
{
|
|
return( id1 == id2 );
|
|
}
|
|
|
|
/** Check whether a key identifier is null.
|
|
*
|
|
* \param key Key identifier.
|
|
*
|
|
* \return Non-zero if the key identifier is null, zero otherwise.
|
|
*/
|
|
static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
|
|
{
|
|
return( key == 0 );
|
|
}
|
|
|
|
#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
|
|
|
|
#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
|
|
#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
|
|
#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
|
|
|
|
/** Utility to initialize a key identifier at runtime.
|
|
*
|
|
* \param owner_id Identifier of the key owner.
|
|
* \param key_id Identifier of the key.
|
|
*/
|
|
static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
|
|
mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
|
|
{
|
|
return( (mbedtls_svc_key_id_t){ .key_id = key_id,
|
|
.owner = owner_id } );
|
|
}
|
|
|
|
/** Compare two key identifiers.
|
|
*
|
|
* \param id1 First key identifier.
|
|
* \param id2 Second key identifier.
|
|
*
|
|
* \return Non-zero if the two key identifier are equal, zero otherwise.
|
|
*/
|
|
static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
|
|
mbedtls_svc_key_id_t id2 )
|
|
{
|
|
return( ( id1.key_id == id2.key_id ) &&
|
|
mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
|
|
}
|
|
|
|
/** Check whether a key identifier is null.
|
|
*
|
|
* \param key Key identifier.
|
|
*
|
|
* \return Non-zero if the key identifier is null, zero otherwise.
|
|
*/
|
|
static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
|
|
{
|
|
return( ( key.key_id == 0 ) && ( key.owner == 0 ) );
|
|
}
|
|
|
|
#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
|
|
|
|
/**@}*/
|
|
|
|
/** \defgroup policy Key policies
|
|
* @{
|
|
*/
|
|
|
|
/** Whether the key may be exported.
|
|
*
|
|
* A public key or the public part of a key pair may always be exported
|
|
* regardless of the value of this permission flag.
|
|
*
|
|
* If a key does not have export permission, implementations shall not
|
|
* allow the key to be exported in plain form from the cryptoprocessor,
|
|
* whether through psa_export_key() or through a proprietary interface.
|
|
* The key may however be exportable in a wrapped form, i.e. in a form
|
|
* where it is encrypted by another key.
|
|
*/
|
|
#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
|
|
|
|
/** Whether the key may be copied.
|
|
*
|
|
* This flag allows the use of psa_copy_key() to make a copy of the key
|
|
* with the same policy or a more restrictive policy.
|
|
*
|
|
* For lifetimes for which the key is located in a secure element which
|
|
* enforce the non-exportability of keys, copying a key outside the secure
|
|
* element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
|
|
* Copying the key inside the secure element is permitted with just
|
|
* #PSA_KEY_USAGE_COPY if the secure element supports it.
|
|
* For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
|
|
* #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
|
|
* is sufficient to permit the copy.
|
|
*/
|
|
#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
|
|
|
|
/** Whether the key may be used to encrypt a message.
|
|
*
|
|
* This flag allows the key to be used for a symmetric encryption operation,
|
|
* for an AEAD encryption-and-authentication operation,
|
|
* or for an asymmetric encryption operation,
|
|
* if otherwise permitted by the key's type and policy.
|
|
*
|
|
* For a key pair, this concerns the public key.
|
|
*/
|
|
#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
|
|
|
|
/** Whether the key may be used to decrypt a message.
|
|
*
|
|
* This flag allows the key to be used for a symmetric decryption operation,
|
|
* for an AEAD decryption-and-verification operation,
|
|
* or for an asymmetric decryption operation,
|
|
* if otherwise permitted by the key's type and policy.
|
|
*
|
|
* For a key pair, this concerns the private key.
|
|
*/
|
|
#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
|
|
|
|
/** Whether the key may be used to sign a message.
|
|
*
|
|
* This flag allows the key to be used for a MAC calculation operation
|
|
* or for an asymmetric signature operation,
|
|
* if otherwise permitted by the key's type and policy.
|
|
*
|
|
* For a key pair, this concerns the private key.
|
|
*/
|
|
#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
|
|
|
|
/** Whether the key may be used to verify a message signature.
|
|
*
|
|
* This flag allows the key to be used for a MAC verification operation
|
|
* or for an asymmetric signature verification operation,
|
|
* if otherwise permitted by by the key's type and policy.
|
|
*
|
|
* For a key pair, this concerns the public key.
|
|
*/
|
|
#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
|
|
|
|
/** Whether the key may be used to derive other keys.
|
|
*/
|
|
#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
|
|
|
|
/**@}*/
|
|
|
|
/** \defgroup derivation Key derivation
|
|
* @{
|
|
*/
|
|
|
|
/** A secret input for key derivation.
|
|
*
|
|
* This should be a key of type #PSA_KEY_TYPE_DERIVE
|
|
* (passed to psa_key_derivation_input_key())
|
|
* or the shared secret resulting from a key agreement
|
|
* (obtained via psa_key_derivation_key_agreement()).
|
|
*
|
|
* The secret can also be a direct input (passed to
|
|
* key_derivation_input_bytes()). In this case, the derivation operation
|
|
* may not be used to derive keys: the operation will only allow
|
|
* psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
|
|
*/
|
|
#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
|
|
|
|
/** A label for key derivation.
|
|
*
|
|
* This should be a direct input.
|
|
* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
|
|
*/
|
|
#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
|
|
|
|
/** A salt for key derivation.
|
|
*
|
|
* This should be a direct input.
|
|
* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
|
|
*/
|
|
#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
|
|
|
|
/** An information string for key derivation.
|
|
*
|
|
* This should be a direct input.
|
|
* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
|
|
*/
|
|
#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
|
|
|
|
/** A seed for key derivation.
|
|
*
|
|
* This should be a direct input.
|
|
* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
|
|
*/
|
|
#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
|
|
|
|
/**@}*/
|
|
|
|
#endif /* PSA_CRYPTO_VALUES_H */
|