mbedtls/programs
Hanno Becker 49ac40b81b Fixup: Don't reference legacy ECP curve identifier in config.h
TinyCrypt should be used as a replacement of legacy ECC. In particular,
there shouldn't be any use of identifiers from the legacy ECC module.

So far, there's the configuration option

  MBEDTLS_SSL_CONF_SINGLE_EC_GRP_ID

that's relevant if MBEDTLS_SSL_CONF_SINGLE_CURVE is set, and which in
this case must resolve to an identifier of type mbedtls_ecp_group_id
indicating which single curve to enable.

With the introduction of TinyCrypt, we must either change the type
of this option to mbedtls_uecc_group_id, or introduce a separate
compilation option.

In order to avoid type confusion, this commit follows tha latter
approach, introducing the configuration option

  MBEDTLS_SSL_CONF_SINGLE_UECC_GRP_ID

that indicatesthe TinyCrypt group identifier of the single curve
to use (must be Secp256r1) if MBEDTLS_SSL_CONF_SINGLE_CURVE
and MBEDTLS_USE_TINYCRYPT are set.
2019-09-04 16:17:25 +01:00
..
aes Remove mbedtls_param_failed from programs 2019-06-17 19:10:13 +02:00
hash Remove mbedtls_param_failed from programs 2019-06-17 19:10:13 +02:00
pkey Remove mbedtls_param_failed from programs 2019-06-17 19:10:13 +02:00
random Remove mbedtls_param_failed from programs 2019-06-17 19:10:13 +02:00
ssl Fixup: Don't reference legacy ECP curve identifier in config.h 2019-09-04 16:17:25 +01:00
test Add x509_internal.h to cpp_dummy_build.cpp 2019-08-01 09:51:53 +02:00
util Remove mbedtls_param_failed from programs 2019-06-17 19:10:13 +02:00
x509 Make function mbedtls_ssl_set_hostname(...) as optional 2019-08-27 10:47:08 +03:00
.gitignore Create programs/test/query_compile_time_config app 2019-02-07 10:32:31 +00:00
CMakeLists.txt - Added missing subdirectory line for util 2012-09-25 08:19:18 +00:00
Makefile Clean generated *.su file and gitignore them 2019-07-30 16:56:58 +02:00
README.md Remove ssl_cert_test sample app 2019-04-07 16:51:18 +03:00
wince_main.c Change main license to Apache 2.0 2015-09-04 14:21:07 +02:00

Mbed TLS sample programs

This subdirectory mostly contains sample programs that illustrate specific features of the library, as well as a few test and support programs.

Symmetric cryptography (AES) examples

  • aes/aescrypt2.c: file encryption and authentication with a key derived from a low-entropy secret, demonstrating the low-level AES interface, the digest interface and HMAC.
    Warning: this program illustrates how to use low-level functions in the library. It should not be taken as an example of how to build a secure encryption mechanism. To derive a key from a low-entropy secret such as a password, use a standard key stretching mechanism such as PBKDF2 (provided by the pkcs5 module). To encrypt and authenticate data, use a standard mode such as GCM or CCM (both available as library module).

  • aes/crypt_and_hash.c: file encryption and authentication, demonstrating the generic cipher interface and the generic hash interface.

Hash (digest) examples

Public-key cryptography examples

Generic public-key cryptography (pk) examples

  • pkey/gen_key.c: generates a key for any of the supported public-key algorithms (RSA or ECC) and writes it to a file that can be used by the other pk sample programs.

  • pkey/key_app.c: loads a PEM or DER public key or private key file and dumps its content.

  • pkey/key_app_writer.c: loads a PEM or DER public key or private key file and writes it to a new PEM or DER file.

  • pkey/pk_encrypt.c, pkey/pk_decrypt.c: loads a PEM or DER public/private key file and uses the key to encrypt/decrypt a short string through the generic public-key interface.

  • pkey/pk_sign.c, pkey/pk_verify.c: loads a PEM or DER private/public key file and uses the key to sign/verify a short string.

ECDSA and RSA signature examples

Diffie-Hellman key exchange examples

  • pkey/dh_client.c, pkey/dh_server.c: secure channel demonstrators (client, server). This pair of programs illustrates how to set up a secure channel using RSA for authentication and Diffie-Hellman to generate a shared AES session key.

  • pkey/ecdh_curve25519.c: demonstration of a elliptic curve Diffie-Hellman (ECDH) key agreement.

Bignum (mpi) usage examples

Random number generator (RNG) examples

  • random/gen_entropy.c: shows how to use the default entropy sources to generate random data.
    Note: most applications should only use the entropy generator to seed a cryptographic pseudorandom generator, as illustrated by random/gen_random_ctr_drbg.c.

  • random/gen_random_ctr_drbg.c: shows how to use the default entropy sources to seed a pseudorandom generator, and how to use the resulting random generator to generate random data.

  • random/gen_random_havege.c: demonstrates the HAVEGE entropy collector.

SSL/TLS examples

SSL/TLS sample applications

  • ssl/dtls_client.c: a simple DTLS client program, which sends one datagram to the server and reads one datagram in response.

  • ssl/dtls_server.c: a simple DTLS server program, which expects one datagram from the client and writes one datagram in response. This program supports DTLS cookies for hello verification.

  • ssl/mini_client.c: a minimalistic SSL client, which sends a short string and disconnects. This is primarily intended as a benchmark; for a better example of a typical TLS client, see ssl/ssl_client1.c.

  • ssl/ssl_client1.c: a simple HTTPS client that sends a fixed request and displays the response.

  • ssl/ssl_fork_server.c: a simple HTTPS server using one process per client to send a fixed response. This program requires a Unix/POSIX environment implementing the fork system call.

  • ssl/ssl_mail_client.c: a simple SMTP-over-TLS or SMTP-STARTTLS client. This client sends an email with fixed content.

  • ssl/ssl_pthread_server.c: a simple HTTPS server using one thread per client to send a fixed response. This program requires the pthread library.

  • ssl/ssl_server.c: a simple HTTPS server that sends a fixed response. It serves a single client at a time.

SSL/TLS feature demonstrators

Note: unlike most of the other programs under the programs/ directory, these two programs are not intended as a basis for writing an application. They combine most of the features supported by the library, and most applications require only a few features. To write a new application, we recommended that you start with ssl_client1.c or ssl_server.c, and then look inside ssl/ssl_client2.c or ssl/ssl_server2.c to see how to use the specific features that your application needs.

  • ssl/ssl_client2.c: an HTTPS client that sends a fixed request and displays the response, with options to select TLS protocol features and Mbed TLS library features.

  • ssl/ssl_server2.c: an HTTPS server that sends a fixed response, with options to select TLS protocol features and Mbed TLS library features.

In addition to providing options for testing client-side features, the ssl_client2 program has options that allow you to trigger certain behaviors in the server. For example, there are options to select ciphersuites, or to force a renegotiation. These options are useful for testing the corresponding features in a TLS server. Likewise, ssl_server2 has options to activate certain behaviors that are useful for testing a TLS client.

Test utilities

Development utilities

  • util/pem2der.c: a PEM to DER converter. Mbed TLS can read PEM files directly, but this utility can be useful for interacting with other tools or with minimal Mbed TLS builds that lack PEM support.

  • util/strerror.c: prints the error description corresponding to an integer status returned by an Mbed TLS function.

X.509 certificate examples

  • x509/cert_app.c: connects to a TLS server and verifies its certificate chain.

  • x509/cert_req.c: generates a certificate signing request (CSR) for a private key.

  • x509/cert_write.c: signs a certificate signing request, or self-signs a certificate.

  • x509/crl_app.c: loads and dumps a certificate revocation list (CRL).

  • x509/req_app.c: loads and dumps a certificate signing request (CSR).