mbedtls/tests/suites/test_suite_rsa.function

531 lines
16 KiB
Plaintext

BEGIN_HEADER
#include <polarssl/rsa.h>
#include <polarssl/md2.h>
#include <polarssl/md4.h>
#include <polarssl/md5.h>
#include <polarssl/sha1.h>
#include <polarssl/sha2.h>
#include <polarssl/sha4.h>
#include <polarssl/havege.h>
END_HEADER
BEGIN_DEPENDENCIES
depends_on:POLARSSL_RSA_C:POLARSSL_BIGNUM_C:POLARSSL_GENPRIME
END_DEPENDENCIES
BEGIN_CASE
rsa_pkcs1_sign:message_hex_string:padding_mode:digest:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:result_hex_str:result
{
unsigned char message_str[1000];
unsigned char hash_result[1000];
unsigned char output[1000];
unsigned char output_str[1000];
rsa_context ctx;
mpi P1, Q1, H, G;
int msg_len;
mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G );
rsa_init( &ctx, {padding_mode}, 0 );
memset( message_str, 0x00, 1000 );
memset( hash_result, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
ctx.len = {mod} / 8;
TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 );
TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 );
TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 );
TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 );
TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 );
TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 );
TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 );
TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 );
TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 );
msg_len = unhexify( message_str, {message_hex_string} );
switch( {digest} )
{
#ifdef POLARSSL_MD2_C
case SIG_RSA_MD2:
md2( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_MD4_C
case SIG_RSA_MD4:
md4( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_MD5_C
case SIG_RSA_MD5:
md5( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_SHA1_C
case SIG_RSA_SHA1:
sha1( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_SHA2_C
case SIG_RSA_SHA224:
sha2( message_str, msg_len, hash_result, 1 );
break;
case SIG_RSA_SHA256:
sha2( message_str, msg_len, hash_result, 0 );
break;
#endif
#ifdef POLARSSL_SHA4_C
case SIG_RSA_SHA384:
sha4( message_str, msg_len, hash_result, 1 );
break;
case SIG_RSA_SHA512:
sha4( message_str, msg_len, hash_result, 0 );
break;
#endif
}
TEST_ASSERT( rsa_pkcs1_sign( &ctx, NULL, NULL, RSA_PRIVATE, {digest}, 0, hash_result, output ) == {result} );
if( {result} == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 );
}
mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G );
}
END_CASE
BEGIN_CASE
rsa_pkcs1_verify:message_hex_string:padding_mode:digest:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result
{
unsigned char message_str[1000];
unsigned char hash_result[1000];
unsigned char result_str[1000];
rsa_context ctx;
int msg_len;
rsa_init( &ctx, {padding_mode}, 0 );
memset( message_str, 0x00, 1000 );
memset( hash_result, 0x00, 1000 );
memset( result_str, 0x00, 1000 );
ctx.len = {mod} / 8;
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 );
msg_len = unhexify( message_str, {message_hex_string} );
unhexify( result_str, {result_hex_str} );
switch( {digest} )
{
#ifdef POLARSSL_MD2_C
case SIG_RSA_MD2:
md2( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_MD4_C
case SIG_RSA_MD4:
md4( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_MD5_C
case SIG_RSA_MD5:
md5( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_SHA1_C
case SIG_RSA_SHA1:
sha1( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_SHA2_C
case SIG_RSA_SHA224:
sha2( message_str, msg_len, hash_result, 1 );
break;
case SIG_RSA_SHA256:
sha2( message_str, msg_len, hash_result, 0 );
break;
#endif
#ifdef POLARSSL_SHA4_C
case SIG_RSA_SHA384:
sha4( message_str, msg_len, hash_result, 1 );
break;
case SIG_RSA_SHA512:
sha4( message_str, msg_len, hash_result, 0 );
break;
#endif
}
TEST_ASSERT( rsa_pkcs1_verify( &ctx, RSA_PUBLIC, {digest}, 0, hash_result, result_str ) == {result} );
}
END_CASE
BEGIN_CASE
rsa_pkcs1_sign_raw:message_hex_string:hash_result_string:padding_mode:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:result_hex_str
{
unsigned char message_str[1000];
unsigned char hash_result[1000];
unsigned char output[1000];
unsigned char output_str[1000];
rsa_context ctx;
mpi P1, Q1, H, G;
int hash_len;
mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G );
rsa_init( &ctx, {padding_mode}, 0 );
memset( message_str, 0x00, 1000 );
memset( hash_result, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
ctx.len = {mod} / 8;
TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 );
TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 );
TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 );
TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 );
TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 );
TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 );
TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 );
TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 );
TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 );
unhexify( message_str, {message_hex_string} );
hash_len = unhexify( hash_result, {hash_result_string} );
TEST_ASSERT( rsa_pkcs1_sign( &ctx, NULL, NULL, RSA_PRIVATE, SIG_RSA_RAW, hash_len, hash_result, output ) == 0 );
hexify( output_str, output, ctx.len );
TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 );
mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G );
}
END_CASE
BEGIN_CASE
rsa_pkcs1_verify_raw:message_hex_string:hash_result_string:padding_mode:mod:radix_N:input_N:radix_E:input_E:result_hex_str:correct
{
unsigned char message_str[1000];
unsigned char hash_result[1000];
unsigned char result_str[1000];
rsa_context ctx;
size_t hash_len;
rsa_init( &ctx, {padding_mode}, 0 );
memset( message_str, 0x00, 1000 );
memset( hash_result, 0x00, 1000 );
memset( result_str, 0x00, 1000 );
ctx.len = {mod} / 8;
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 );
unhexify( message_str, {message_hex_string} );
hash_len = unhexify( hash_result, {hash_result_string} );
unhexify( result_str, {result_hex_str} );
TEST_ASSERT( rsa_pkcs1_verify( &ctx, RSA_PUBLIC, SIG_RSA_RAW, hash_len, hash_result, result_str ) == {correct} );
}
END_CASE
BEGIN_CASE
rsa_pkcs1_encrypt:message_hex_string:padding_mode:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result
{
unsigned char message_str[1000];
unsigned char output[1000];
unsigned char output_str[1000];
rsa_context ctx;
size_t msg_len;
rnd_pseudo_info rnd_info;
memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) );
rsa_init( &ctx, {padding_mode}, 0 );
memset( message_str, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
ctx.len = {mod} / 8;
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 );
msg_len = unhexify( message_str, {message_hex_string} );
TEST_ASSERT( rsa_pkcs1_encrypt( &ctx, &rnd_pseudo_rand, &rnd_info, RSA_PUBLIC, msg_len, message_str, output ) == {result} );
if( {result} == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 );
}
}
END_CASE
BEGIN_CASE
rsa_pkcs1_encrypt_bad_rng:message_hex_string:padding_mode:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result
{
unsigned char message_str[1000];
unsigned char output[1000];
unsigned char output_str[1000];
rsa_context ctx;
size_t msg_len;
rsa_init( &ctx, {padding_mode}, 0 );
memset( message_str, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
ctx.len = {mod} / 8;
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 );
msg_len = unhexify( message_str, {message_hex_string} );
TEST_ASSERT( rsa_pkcs1_encrypt( &ctx, &rnd_zero_rand, NULL, RSA_PUBLIC, msg_len, message_str, output ) == {result} );
if( {result} == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 );
}
}
END_CASE
BEGIN_CASE
rsa_pkcs1_decrypt:message_hex_string:padding_mode:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:max_output:result_hex_str:result
{
unsigned char message_str[1000];
unsigned char output[1000];
unsigned char output_str[1000];
rsa_context ctx;
mpi P1, Q1, H, G;
size_t output_len;
mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G );
rsa_init( &ctx, {padding_mode}, 0 );
memset( message_str, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
ctx.len = {mod} / 8;
TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 );
TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 );
TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 );
TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 );
TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 );
TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 );
TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 );
TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 );
TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 );
unhexify( message_str, {message_hex_string} );
output_len = 0;
TEST_ASSERT( rsa_pkcs1_decrypt( &ctx, RSA_PRIVATE, &output_len, message_str, output, {max_output} ) == {result} );
if( {result} == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strncasecmp( (char *) output_str, {result_hex_str}, strlen( {result_hex_str} ) ) == 0 );
}
mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G );
}
END_CASE
BEGIN_CASE
rsa_public:message_hex_string:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result
{
unsigned char message_str[1000];
unsigned char output[1000];
unsigned char output_str[1000];
rsa_context ctx;
rsa_init( &ctx, RSA_PKCS_V15, 0 );
memset( message_str, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
ctx.len = {mod} / 8;
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 );
unhexify( message_str, {message_hex_string} );
TEST_ASSERT( rsa_public( &ctx, message_str, output ) == {result} );
if( {result} == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 );
}
}
END_CASE
BEGIN_CASE
rsa_private:message_hex_string:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:result_hex_str:result
{
unsigned char message_str[1000];
unsigned char output[1000];
unsigned char output_str[1000];
rsa_context ctx;
mpi P1, Q1, H, G;
mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G );
rsa_init( &ctx, RSA_PKCS_V15, 0 );
memset( message_str, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
ctx.len = {mod} / 8;
TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 );
TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 );
TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 );
TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 );
TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 );
TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 );
TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 );
TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 );
TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 );
unhexify( message_str, {message_hex_string} );
TEST_ASSERT( rsa_private( &ctx, message_str, output ) == {result} );
if( {result} == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 );
}
mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G );
}
END_CASE
BEGIN_CASE
rsa_check_privkey_null:
{
rsa_context ctx;
memset( &ctx, 0x00, sizeof( rsa_context ) );
TEST_ASSERT( rsa_check_privkey( &ctx ) == POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
}
END_CASE
BEGIN_CASE
rsa_check_pubkey:radix_N:input_N:radix_E:input_E:result
{
rsa_context ctx;
rsa_init( &ctx, RSA_PKCS_V15, 0 );
if( strlen( {input_N} ) )
{
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
}
if( strlen( {input_E} ) )
{
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
}
TEST_ASSERT( rsa_check_pubkey( &ctx ) == {result} );
}
END_CASE
BEGIN_CASE
rsa_check_privkey:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:radix_D:input_D:result
{
rsa_context ctx;
rsa_init( &ctx, RSA_PKCS_V15, 0 );
ctx.len = {mod} / 8;
if( strlen( {input_P} ) )
{
TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 );
}
if( strlen( {input_Q} ) )
{
TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 );
}
if( strlen( {input_N} ) )
{
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
}
if( strlen( {input_E} ) )
{
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
}
if( strlen( {input_D} ) )
{
TEST_ASSERT( mpi_read_string( &ctx.D, {radix_D}, {input_D} ) == 0 );
}
TEST_ASSERT( rsa_check_privkey( &ctx ) == {result} );
}
END_CASE
BEGIN_CASE
rsa_gen_key:nrbits:exponent:result
{
rsa_context ctx;
havege_state hs;
havege_init( &hs );
rsa_init( &ctx, 0, 0 );
TEST_ASSERT( rsa_gen_key( &ctx, havege_random, &hs, {nrbits}, {exponent} ) == {result} );
if( {result} == 0 )
{
TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 );
}
}
END_CASE
BEGIN_CASE
rsa_selftest:
{
TEST_ASSERT( rsa_self_test( 0 ) == 0 );
}
END_CASE