mirror of
https://github.com/yuzu-emu/mbedtls.git
synced 2024-11-24 03:45:47 +01:00
5e9c9cca03
Macros that are referenced need to be documented, otherwise Doxygen has nothing to link to.
1421 lines
63 KiB
C
1421 lines
63 KiB
C
/**
|
|
* \file psa/crypto_values.h
|
|
*
|
|
* \brief PSA cryptography module: macros to build and analyze integer values.
|
|
*
|
|
* \note This file may not be included directly. Applications must
|
|
* include psa/crypto.h. Drivers must include the appropriate driver
|
|
* header file.
|
|
*
|
|
* This file contains portable definitions of macros to build and analyze
|
|
* values of integral types that encode properties of cryptographic keys,
|
|
* designations of cryptographic algorithms, and error codes returned by
|
|
* the library.
|
|
*
|
|
* This header file only defines preprocessor macros.
|
|
*/
|
|
/*
|
|
* Copyright (C) 2018, ARM Limited, All Rights Reserved
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* This file is part of mbed TLS (https://tls.mbed.org)
|
|
*/
|
|
|
|
#ifndef PSA_CRYPTO_VALUES_H
|
|
#define PSA_CRYPTO_VALUES_H
|
|
|
|
/** \defgroup error Error codes
|
|
* @{
|
|
*/
|
|
|
|
#if !defined(PSA_SUCCESS)
|
|
/* If PSA_SUCCESS is defined, assume that PSA crypto is being used
|
|
* together with PSA IPC, which also defines the identifier
|
|
* PSA_SUCCESS. We must not define PSA_SUCCESS ourselves in that case;
|
|
* the other error code names don't clash. This is a temporary hack
|
|
* until we unify error reporting in PSA IPC and PSA crypto.
|
|
*
|
|
* Note that psa_defs.h must be included before this header!
|
|
*/
|
|
/** The action was completed successfully. */
|
|
#define PSA_SUCCESS ((psa_status_t)0)
|
|
#endif /* !defined(PSA_SUCCESS) */
|
|
|
|
/** An error occurred that does not correspond to any defined
|
|
* failure cause.
|
|
*
|
|
* Implementations may use this error code if none of the other standard
|
|
* error codes are applicable. */
|
|
#define PSA_ERROR_UNKNOWN_ERROR ((psa_status_t)1)
|
|
|
|
/** The requested operation or a parameter is not supported
|
|
* by this implementation.
|
|
*
|
|
* Implementations should return this error code when an enumeration
|
|
* parameter such as a key type, algorithm, etc. is not recognized.
|
|
* If a combination of parameters is recognized and identified as
|
|
* not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
|
|
#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)2)
|
|
|
|
/** The requested action is denied by a policy.
|
|
*
|
|
* Implementations should return this error code when the parameters
|
|
* are recognized as valid and supported, and a policy explicitly
|
|
* denies the requested operation.
|
|
*
|
|
* If a subset of the parameters of a function call identify a
|
|
* forbidden operation, and another subset of the parameters are
|
|
* not valid or not supported, it is unspecified whether the function
|
|
* returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
|
|
* #PSA_ERROR_INVALID_ARGUMENT. */
|
|
#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)3)
|
|
|
|
/** An output buffer is too small.
|
|
*
|
|
* Applications can call the \c PSA_xxx_SIZE macro listed in the function
|
|
* description to determine a sufficient buffer size.
|
|
*
|
|
* Implementations should preferably return this error code only
|
|
* in cases when performing the operation with a larger output
|
|
* buffer would succeed. However implementations may return this
|
|
* error if a function has invalid or unsupported parameters in addition
|
|
* to the parameters that determine the necessary output buffer size. */
|
|
#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)4)
|
|
|
|
/** A slot is occupied, but must be empty to carry out the
|
|
* requested action.
|
|
*
|
|
* If a handle is invalid, it does not designate an occupied slot.
|
|
* The error for an invalid handle is #PSA_ERROR_INVALID_HANDLE.
|
|
*/
|
|
#define PSA_ERROR_OCCUPIED_SLOT ((psa_status_t)5)
|
|
|
|
/** A slot is empty, but must be occupied to carry out the
|
|
* requested action.
|
|
*
|
|
* If a handle is invalid, it does not designate an empty slot.
|
|
* The error for an invalid handle is #PSA_ERROR_INVALID_HANDLE.
|
|
*/
|
|
#define PSA_ERROR_EMPTY_SLOT ((psa_status_t)6)
|
|
|
|
/** The requested action cannot be performed in the current state.
|
|
*
|
|
* Multipart operations return this error when one of the
|
|
* functions is called out of sequence. Refer to the function
|
|
* descriptions for permitted sequencing of functions.
|
|
*
|
|
* Implementations shall not return this error code to indicate
|
|
* that a key slot is occupied when it needs to be free or vice versa,
|
|
* but shall return #PSA_ERROR_OCCUPIED_SLOT or #PSA_ERROR_EMPTY_SLOT
|
|
* as applicable. */
|
|
#define PSA_ERROR_BAD_STATE ((psa_status_t)7)
|
|
|
|
/** The parameters passed to the function are invalid.
|
|
*
|
|
* Implementations may return this error any time a parameter or
|
|
* combination of parameters are recognized as invalid.
|
|
*
|
|
* Implementations shall not return this error code to indicate
|
|
* that a key slot is occupied when it needs to be free or vice versa,
|
|
* but shall return #PSA_ERROR_OCCUPIED_SLOT or #PSA_ERROR_EMPTY_SLOT
|
|
* as applicable.
|
|
*
|
|
* Implementation shall not return this error code to indicate that a
|
|
* key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
|
|
* instead.
|
|
*/
|
|
#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)8)
|
|
|
|
/** There is not enough runtime memory.
|
|
*
|
|
* If the action is carried out across multiple security realms, this
|
|
* error can refer to available memory in any of the security realms. */
|
|
#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)9)
|
|
|
|
/** There is not enough persistent storage.
|
|
*
|
|
* Functions that modify the key storage return this error code if
|
|
* there is insufficient storage space on the host media. In addition,
|
|
* many functions that do not otherwise access storage may return this
|
|
* error code if the implementation requires a mandatory log entry for
|
|
* the requested action and the log storage space is full. */
|
|
#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)10)
|
|
|
|
/** There was a communication failure inside the implementation.
|
|
*
|
|
* This can indicate a communication failure between the application
|
|
* and an external cryptoprocessor or between the cryptoprocessor and
|
|
* an external volatile or persistent memory. A communication failure
|
|
* may be transient or permanent depending on the cause.
|
|
*
|
|
* \warning If a function returns this error, it is undetermined
|
|
* whether the requested action has completed or not. Implementations
|
|
* should return #PSA_SUCCESS on successful completion whenver
|
|
* possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
|
|
* if the requested action was completed successfully in an external
|
|
* cryptoprocessor but there was a breakdown of communication before
|
|
* the cryptoprocessor could report the status to the application.
|
|
*/
|
|
#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)11)
|
|
|
|
/** There was a storage failure that may have led to data loss.
|
|
*
|
|
* This error indicates that some persistent storage is corrupted.
|
|
* It should not be used for a corruption of volatile memory
|
|
* (use #PSA_ERROR_TAMPERING_DETECTED), for a communication error
|
|
* between the cryptoprocessor and its external storage (use
|
|
* #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
|
|
* in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
|
|
*
|
|
* Note that a storage failure does not indicate that any data that was
|
|
* previously read is invalid. However this previously read data may no
|
|
* longer be readable from storage.
|
|
*
|
|
* When a storage failure occurs, it is no longer possible to ensure
|
|
* the global integrity of the keystore. Depending on the global
|
|
* integrity guarantees offered by the implementation, access to other
|
|
* data may or may not fail even if the data is still readable but
|
|
* its integrity canont be guaranteed.
|
|
*
|
|
* Implementations should only use this error code to report a
|
|
* permanent storage corruption. However application writers should
|
|
* keep in mind that transient errors while reading the storage may be
|
|
* reported using this error code. */
|
|
#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)12)
|
|
|
|
/** A hardware failure was detected.
|
|
*
|
|
* A hardware failure may be transient or permanent depending on the
|
|
* cause. */
|
|
#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)13)
|
|
|
|
/** A tampering attempt was detected.
|
|
*
|
|
* If an application receives this error code, there is no guarantee
|
|
* that previously accessed or computed data was correct and remains
|
|
* confidential. Applications should not perform any security function
|
|
* and should enter a safe failure state.
|
|
*
|
|
* Implementations may return this error code if they detect an invalid
|
|
* state that cannot happen during normal operation and that indicates
|
|
* that the implementation's security guarantees no longer hold. Depending
|
|
* on the implementation architecture and on its security and safety goals,
|
|
* the implementation may forcibly terminate the application.
|
|
*
|
|
* This error code is intended as a last resort when a security breach
|
|
* is detected and it is unsure whether the keystore data is still
|
|
* protected. Implementations shall only return this error code
|
|
* to report an alarm from a tampering detector, to indicate that
|
|
* the confidentiality of stored data can no longer be guaranteed,
|
|
* or to indicate that the integrity of previously returned data is now
|
|
* considered compromised. Implementations shall not use this error code
|
|
* to indicate a hardware failure that merely makes it impossible to
|
|
* perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
|
|
* #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
|
|
* #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
|
|
* instead).
|
|
*
|
|
* This error indicates an attack against the application. Implementations
|
|
* shall not return this error code as a consequence of the behavior of
|
|
* the application itself. */
|
|
#define PSA_ERROR_TAMPERING_DETECTED ((psa_status_t)14)
|
|
|
|
/** There is not enough entropy to generate random data needed
|
|
* for the requested action.
|
|
*
|
|
* This error indicates a failure of a hardware random generator.
|
|
* Application writers should note that this error can be returned not
|
|
* only by functions whose purpose is to generate random data, such
|
|
* as key, IV or nonce generation, but also by functions that execute
|
|
* an algorithm with a randomized result, as well as functions that
|
|
* use randomization of intermediate computations as a countermeasure
|
|
* to certain attacks.
|
|
*
|
|
* Implementations should avoid returning this error after psa_crypto_init()
|
|
* has succeeded. Implementations should generate sufficient
|
|
* entropy during initialization and subsequently use a cryptographically
|
|
* secure pseudorandom generator (PRNG). However implementations may return
|
|
* this error at any time if a policy requires the PRNG to be reseeded
|
|
* during normal operation. */
|
|
#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)15)
|
|
|
|
/** The signature, MAC or hash is incorrect.
|
|
*
|
|
* Verification functions return this error if the verification
|
|
* calculations completed successfully, and the value to be verified
|
|
* was determined to be incorrect.
|
|
*
|
|
* If the value to verify has an invalid size, implementations may return
|
|
* either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
|
|
#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)16)
|
|
|
|
/** The decrypted padding is incorrect.
|
|
*
|
|
* \warning In some protocols, when decrypting data, it is essential that
|
|
* the behavior of the application does not depend on whether the padding
|
|
* is correct, down to precise timing. Applications should prefer
|
|
* protocols that use authenticated encryption rather than plain
|
|
* encryption. If the application must perform a decryption of
|
|
* unauthenticated data, the application writer should take care not
|
|
* to reveal whether the padding is invalid.
|
|
*
|
|
* Implementations should strive to make valid and invalid padding
|
|
* as close as possible to indistinguishable to an external observer.
|
|
* In particular, the timing of a decryption operation should not
|
|
* depend on the validity of the padding. */
|
|
#define PSA_ERROR_INVALID_PADDING ((psa_status_t)17)
|
|
|
|
/** The generator has insufficient capacity left.
|
|
*
|
|
* Once a function returns this error, attempts to read from the
|
|
* generator will always return this error. */
|
|
#define PSA_ERROR_INSUFFICIENT_CAPACITY ((psa_status_t)18)
|
|
|
|
/** The key handle is not valid.
|
|
*/
|
|
#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)19)
|
|
|
|
/**@}*/
|
|
|
|
/** \defgroup crypto_types Key and algorithm types
|
|
* @{
|
|
*/
|
|
|
|
/** An invalid key type value.
|
|
*
|
|
* Zero is not the encoding of any key type.
|
|
*/
|
|
#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
|
|
|
|
/** Vendor-defined flag
|
|
*
|
|
* Key types defined by this standard will never have the
|
|
* #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
|
|
* must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
|
|
* respect the bitwise structure used by standard encodings whenever practical.
|
|
*/
|
|
#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
|
|
|
|
#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
|
|
#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
|
|
#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
|
|
#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
|
|
#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
|
|
|
|
#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
|
|
|
|
/** Whether a key type is vendor-defined. */
|
|
#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
|
|
(((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
|
|
|
|
/** Whether a key type is an unstructured array of bytes.
|
|
*
|
|
* This encompasses both symmetric keys and non-key data.
|
|
*/
|
|
#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
|
|
(((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
|
|
PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
|
|
|
|
/** Whether a key type is asymmetric: either a key pair or a public key. */
|
|
#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
|
|
(((type) & PSA_KEY_TYPE_CATEGORY_MASK \
|
|
& ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
|
|
PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
|
|
/** Whether a key type is the public part of a key pair. */
|
|
#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
|
|
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
|
|
/** Whether a key type is a key pair containing a private part and a public
|
|
* part. */
|
|
#define PSA_KEY_TYPE_IS_KEYPAIR(type) \
|
|
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
|
|
/** The key pair type corresponding to a public key type.
|
|
*
|
|
* You may also pass a key pair type as \p type, it will be left unchanged.
|
|
*
|
|
* \param type A public key type or key pair type.
|
|
*
|
|
* \return The corresponding key pair type.
|
|
* If \p type is not a public key or a key pair,
|
|
* the return value is undefined.
|
|
*/
|
|
#define PSA_KEY_TYPE_KEYPAIR_OF_PUBLIC_KEY(type) \
|
|
((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
|
|
/** The public key type corresponding to a key pair type.
|
|
*
|
|
* You may also pass a key pair type as \p type, it will be left unchanged.
|
|
*
|
|
* \param type A public key type or key pair type.
|
|
*
|
|
* \return The corresponding public key type.
|
|
* If \p type is not a public key or a key pair,
|
|
* the return value is undefined.
|
|
*/
|
|
#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) \
|
|
((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
|
|
|
|
/** Raw data.
|
|
*
|
|
* A "key" of this type cannot be used for any cryptographic operation.
|
|
* Applications may use this type to store arbitrary data in the keystore. */
|
|
#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001)
|
|
|
|
/** HMAC key.
|
|
*
|
|
* The key policy determines which underlying hash algorithm the key can be
|
|
* used for.
|
|
*
|
|
* HMAC keys should generally have the same size as the underlying hash.
|
|
* This size can be calculated with #PSA_HASH_SIZE(\c alg) where
|
|
* \c alg is the HMAC algorithm or the underlying hash algorithm. */
|
|
#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
|
|
|
|
/** A secret for key derivation.
|
|
*
|
|
* The key policy determines which key derivation algorithm the key
|
|
* can be used for.
|
|
*/
|
|
#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
|
|
|
|
/** Key for an cipher, AEAD or MAC algorithm based on the AES block cipher.
|
|
*
|
|
* The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
|
|
* 32 bytes (AES-256).
|
|
*/
|
|
#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001)
|
|
|
|
/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
|
|
*
|
|
* The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
|
|
* 24 bytes (3-key 3DES).
|
|
*
|
|
* Note that single DES and 2-key 3DES are weak and strongly
|
|
* deprecated and should only be used to decrypt legacy data. 3-key 3DES
|
|
* is weak and deprecated and should only be used in legacy protocols.
|
|
*/
|
|
#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002)
|
|
|
|
/** Key for an cipher, AEAD or MAC algorithm based on the
|
|
* Camellia block cipher. */
|
|
#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003)
|
|
|
|
/** Key for the RC4 stream cipher.
|
|
*
|
|
* Note that RC4 is weak and deprecated and should only be used in
|
|
* legacy protocols. */
|
|
#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004)
|
|
|
|
/** RSA public key. */
|
|
#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000)
|
|
/** RSA key pair (private and public key). */
|
|
#define PSA_KEY_TYPE_RSA_KEYPAIR ((psa_key_type_t)0x70010000)
|
|
/** Whether a key type is an RSA key (pair or public-only). */
|
|
#define PSA_KEY_TYPE_IS_RSA(type) \
|
|
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
|
|
|
|
/** DSA public key. */
|
|
#define PSA_KEY_TYPE_DSA_PUBLIC_KEY ((psa_key_type_t)0x60020000)
|
|
/** DSA key pair (private and public key). */
|
|
#define PSA_KEY_TYPE_DSA_KEYPAIR ((psa_key_type_t)0x70020000)
|
|
/** Whether a key type is an DSA key (pair or public-only). */
|
|
#define PSA_KEY_TYPE_IS_DSA(type) \
|
|
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_DSA_PUBLIC_KEY)
|
|
|
|
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000)
|
|
#define PSA_KEY_TYPE_ECC_KEYPAIR_BASE ((psa_key_type_t)0x70030000)
|
|
#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
|
|
/** Elliptic curve key pair. */
|
|
#define PSA_KEY_TYPE_ECC_KEYPAIR(curve) \
|
|
(PSA_KEY_TYPE_ECC_KEYPAIR_BASE | (curve))
|
|
/** Elliptic curve public key. */
|
|
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
|
|
(PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
|
|
|
|
/** Whether a key type is an elliptic curve key (pair or public-only). */
|
|
#define PSA_KEY_TYPE_IS_ECC(type) \
|
|
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) & \
|
|
~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
|
|
/** Whether a key type is an elliptic curve key pair. */
|
|
#define PSA_KEY_TYPE_IS_ECC_KEYPAIR(type) \
|
|
(((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
|
|
PSA_KEY_TYPE_ECC_KEYPAIR_BASE)
|
|
/** Whether a key type is an elliptic curve public key. */
|
|
#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
|
|
(((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
|
|
PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
|
|
|
|
/** Extract the curve from an elliptic curve key type. */
|
|
#define PSA_KEY_TYPE_GET_CURVE(type) \
|
|
((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
|
|
((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
|
|
0))
|
|
|
|
/* The encoding of curve identifiers is currently aligned with the
|
|
* TLS Supported Groups Registry (formerly known as the
|
|
* TLS EC Named Curve Registry)
|
|
* https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
|
|
* The values are defined by RFC 8422 and RFC 7027. */
|
|
#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
|
|
#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
|
|
#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
|
|
#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
|
|
#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
|
|
#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
|
|
#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
|
|
#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
|
|
#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
|
|
#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
|
|
#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
|
|
#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
|
|
#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
|
|
#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
|
|
#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
|
|
#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
|
|
#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
|
|
#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
|
|
#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
|
|
#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
|
|
#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
|
|
#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
|
|
#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
|
|
#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
|
|
#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
|
|
#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
|
|
#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
|
|
#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
|
|
#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
|
|
#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
|
|
|
|
/** The block size of a block cipher.
|
|
*
|
|
* \param type A cipher key type (value of type #psa_key_type_t).
|
|
*
|
|
* \return The block size for a block cipher, or 1 for a stream cipher.
|
|
* The return value is undefined if \p type is not a supported
|
|
* cipher key type.
|
|
*
|
|
* \note It is possible to build stream cipher algorithms on top of a block
|
|
* cipher, for example CTR mode (#PSA_ALG_CTR).
|
|
* This macro only takes the key type into account, so it cannot be
|
|
* used to determine the size of the data that #psa_cipher_update()
|
|
* might buffer for future processing in general.
|
|
*
|
|
* \note This macro returns a compile-time constant if its argument is one.
|
|
*
|
|
* \warning This macro may evaluate its argument multiple times.
|
|
*/
|
|
#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
|
|
( \
|
|
(type) == PSA_KEY_TYPE_AES ? 16 : \
|
|
(type) == PSA_KEY_TYPE_DES ? 8 : \
|
|
(type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
|
|
(type) == PSA_KEY_TYPE_ARC4 ? 1 : \
|
|
0)
|
|
|
|
#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
|
|
#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
|
|
#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
|
|
#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
|
|
#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
|
|
#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
|
|
#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
|
|
#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
|
|
#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x22000000)
|
|
#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x30000000)
|
|
#define PSA_ALG_CATEGORY_KEY_SELECTION ((psa_algorithm_t)0x31000000)
|
|
|
|
#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
|
|
(((alg) & PSA_ALG_VENDOR_FLAG) != 0)
|
|
|
|
/** Whether the specified algorithm is a hash algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a hash algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_HASH(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
|
|
|
|
/** Whether the specified algorithm is a MAC algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a MAC algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_MAC(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
|
|
|
|
/** Whether the specified algorithm is a symmetric cipher algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_CIPHER(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
|
|
|
|
/** Whether the specified algorithm is an authenticated encryption
|
|
* with associated data (AEAD) algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_AEAD(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
|
|
|
|
/** Whether the specified algorithm is a public-key signature algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_SIGN(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
|
|
|
|
/** Whether the specified algorithm is a public-key encryption algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
|
|
|
|
#define PSA_ALG_KEY_SELECTION_FLAG ((psa_algorithm_t)0x01000000)
|
|
/** Whether the specified algorithm is a key agreement algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK & ~PSA_ALG_KEY_SELECTION_FLAG) == \
|
|
PSA_ALG_CATEGORY_KEY_AGREEMENT)
|
|
|
|
/** Whether the specified algorithm is a key derivation algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_KEY_DERIVATION(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
|
|
|
|
/** Whether the specified algorithm is a key selection algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a key selection algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_KEY_SELECTION(alg) \
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_SELECTION)
|
|
|
|
#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
|
|
#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
|
|
#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
|
|
#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
|
|
#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
|
|
#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
|
|
/** SHA2-224 */
|
|
#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
|
|
/** SHA2-256 */
|
|
#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
|
|
/** SHA2-384 */
|
|
#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
|
|
/** SHA2-512 */
|
|
#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
|
|
/** SHA2-512/224 */
|
|
#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
|
|
/** SHA2-512/256 */
|
|
#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
|
|
/** SHA3-224 */
|
|
#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
|
|
/** SHA3-256 */
|
|
#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
|
|
/** SHA3-384 */
|
|
#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
|
|
/** SHA3-512 */
|
|
#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
|
|
|
|
#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
|
|
#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
|
|
/** Macro to build an HMAC algorithm.
|
|
*
|
|
* For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
*
|
|
* \return The corresponding HMAC algorithm.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_HMAC(hash_alg) \
|
|
(PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
|
|
(PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
/** Whether the specified algorithm is an HMAC algorithm.
|
|
*
|
|
* HMAC is a family of MAC algorithms that are based on a hash function.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_HMAC(alg) \
|
|
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
|
|
PSA_ALG_HMAC_BASE)
|
|
|
|
/* In the encoding of a MAC algorithm, the bits corresponding to
|
|
* PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
|
|
* truncated. As an exception, the value 0 means the untruncated algorithm,
|
|
* whatever its length is. The length is encoded in 6 bits, so it can
|
|
* reach up to 63; the largest MAC is 64 bytes so its trivial truncation
|
|
* to full length is correctly encoded as 0 and any non-trivial truncation
|
|
* is correctly encoded as a value between 1 and 63. */
|
|
#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
|
|
#define PSA_MAC_TRUNCATION_OFFSET 8
|
|
|
|
/** Macro to build a truncated MAC algorithm.
|
|
*
|
|
* A truncated MAC algorithm is identical to the corresponding MAC
|
|
* algorithm except that the MAC value for the truncated algorithm
|
|
* consists of only the first \p mac_length bytes of the MAC value
|
|
* for the untruncated algorithm.
|
|
*
|
|
* \note This macro may allow constructing algorithm identifiers that
|
|
* are not valid, either because the specified length is larger
|
|
* than the untruncated MAC or because the specified length is
|
|
* smaller than permitted by the implementation.
|
|
*
|
|
* \note It is implementation-defined whether a truncated MAC that
|
|
* is truncated to the same length as the MAC of the untruncated
|
|
* algorithm is considered identical to the untruncated algorithm
|
|
* for policy comparison purposes.
|
|
*
|
|
* \param alg A MAC algorithm identifier (value of type
|
|
* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
|
|
* is true). This may be a truncated or untruncated
|
|
* MAC algorithm.
|
|
* \param mac_length Desired length of the truncated MAC in bytes.
|
|
* This must be at most the full length of the MAC
|
|
* and must be at least an implementation-specified
|
|
* minimum. The implementation-specified minimum
|
|
* shall not be zero.
|
|
*
|
|
* \return The corresponding MAC algorithm with the specified
|
|
* length.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* MAC algorithm or if \p mac_length is too small or
|
|
* too large for the specified MAC algorithm.
|
|
*/
|
|
#define PSA_ALG_TRUNCATED_MAC(alg, mac_length) \
|
|
(((alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
|
|
((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
|
|
|
|
/** Macro to build the base MAC algorithm corresponding to a truncated
|
|
* MAC algorithm.
|
|
*
|
|
* \param alg A MAC algorithm identifier (value of type
|
|
* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
|
|
* is true). This may be a truncated or untruncated
|
|
* MAC algorithm.
|
|
*
|
|
* \return The corresponding base MAC algorithm.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* MAC algorithm.
|
|
*/
|
|
#define PSA_ALG_FULL_LENGTH_MAC(alg) \
|
|
((alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
|
|
|
|
/** Length to which a MAC algorithm is truncated.
|
|
*
|
|
* \param alg A MAC algorithm identifier (value of type
|
|
* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
|
|
* is true).
|
|
*
|
|
* \return Length of the truncated MAC in bytes.
|
|
* \return 0 if \p alg is a non-truncated MAC algorithm.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* MAC algorithm.
|
|
*/
|
|
#define PSA_MAC_TRUNCATED_LENGTH(alg) \
|
|
(((alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
|
|
|
|
#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
|
|
#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
|
|
#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
|
|
#define PSA_ALG_GMAC ((psa_algorithm_t)0x02c00003)
|
|
|
|
/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
|
|
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
|
|
PSA_ALG_CIPHER_MAC_BASE)
|
|
|
|
#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
|
|
#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
|
|
|
|
/** Whether the specified algorithm is a stream cipher.
|
|
*
|
|
* A stream cipher is a symmetric cipher that encrypts or decrypts messages
|
|
* by applying a bitwise-xor with a stream of bytes that is generated
|
|
* from a key.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
* algorithm identifier or if it is not a symmetric cipher algorithm.
|
|
*/
|
|
#define PSA_ALG_IS_STREAM_CIPHER(alg) \
|
|
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
|
|
(PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
|
|
|
|
/** The ARC4 stream cipher algorithm.
|
|
*/
|
|
#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
|
|
|
|
/** The CTR stream cipher mode.
|
|
*
|
|
* CTR is a stream cipher which is built from a block cipher.
|
|
* The underlying block cipher is determined by the key type.
|
|
* For example, to use AES-128-CTR, use this algorithm with
|
|
* a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
|
|
*/
|
|
#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
|
|
|
|
#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
|
|
|
|
#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
|
|
|
|
/** The XTS cipher mode.
|
|
*
|
|
* XTS is a cipher mode which is built from a block cipher. It requires at
|
|
* least one full block of input, but beyond this minimum the input
|
|
* does not need to be a whole number of blocks.
|
|
*/
|
|
#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
|
|
|
|
/** The CBC block cipher chaining mode, with no padding.
|
|
*
|
|
* The underlying block cipher is determined by the key type.
|
|
*
|
|
* This symmetric cipher mode can only be used with messages whose lengths
|
|
* are whole number of blocks for the chosen block cipher.
|
|
*/
|
|
#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
|
|
|
|
/** The CBC block cipher chaining mode with PKCS#7 padding.
|
|
*
|
|
* The underlying block cipher is determined by the key type.
|
|
*
|
|
* This is the padding method defined by PKCS#7 (RFC 2315) §10.3.
|
|
*/
|
|
#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
|
|
|
|
#define PSA_ALG_CCM ((psa_algorithm_t)0x06001001)
|
|
#define PSA_ALG_GCM ((psa_algorithm_t)0x06001002)
|
|
|
|
/* In the encoding of a AEAD algorithm, the bits corresponding to
|
|
* PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
|
|
* The constants for default lengths follow this encoding.
|
|
*/
|
|
#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
|
|
#define PSA_AEAD_TAG_LENGTH_OFFSET 8
|
|
|
|
/** Macro to build a shortened AEAD algorithm.
|
|
*
|
|
* A shortened AEAD algorithm is similar to the corresponding AEAD
|
|
* algorithm, but has an authentication tag that consists of fewer bytes.
|
|
* Depending on the algorithm, the tag length may affect the calculation
|
|
* of the ciphertext.
|
|
*
|
|
* \param alg A AEAD algorithm identifier (value of type
|
|
* #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
|
|
* is true).
|
|
* \param tag_length Desired length of the authentication tag in bytes.
|
|
*
|
|
* \return The corresponding AEAD algorithm with the specified
|
|
* length.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* AEAD algorithm or if \p tag_length is not valid
|
|
* for the specified AEAD algorithm.
|
|
*/
|
|
#define PSA_ALG_AEAD_WITH_TAG_LENGTH(alg, tag_length) \
|
|
(((alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
|
|
((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
|
|
PSA_ALG_AEAD_TAG_LENGTH_MASK))
|
|
|
|
/** Calculate the corresponding AEAD algorithm with the default tag length.
|
|
*
|
|
* \param alg An AEAD algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_AEAD(\p alg) is true).
|
|
*
|
|
* \return The corresponding AEAD algorithm with the default tag length
|
|
* for that algorithm.
|
|
*/
|
|
#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(alg) \
|
|
( \
|
|
PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(alg, PSA_ALG_CCM) \
|
|
PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(alg, PSA_ALG_GCM) \
|
|
0)
|
|
#define PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(alg, ref) \
|
|
PSA_ALG_AEAD_WITH_TAG_LENGTH(alg, 0) == \
|
|
PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
|
|
ref :
|
|
|
|
#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
|
|
/** RSA PKCS#1 v1.5 signature with hashing.
|
|
*
|
|
* This is the signature scheme defined by RFC 8017
|
|
* (PKCS#1: RSA Cryptography Specifications) under the name
|
|
* RSASSA-PKCS1-v1_5.
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
*
|
|
* \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
|
|
(PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
/** Raw PKCS#1 v1.5 signature.
|
|
*
|
|
* The input to this algorithm is the DigestInfo structure used by
|
|
* RFC 8017 (PKCS#1: RSA Cryptography Specifications), §9.2
|
|
* steps 3–6.
|
|
*/
|
|
#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
|
|
#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
|
|
|
|
#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
|
|
/** RSA PSS signature with hashing.
|
|
*
|
|
* This is the signature scheme defined by RFC 8017
|
|
* (PKCS#1: RSA Cryptography Specifications) under the name
|
|
* RSASSA-PSS, with the message generation function MGF1, and with
|
|
* a salt length equal to the length of the hash. The specified
|
|
* hash algorithm is used to hash the input message, to create the
|
|
* salted hash, and for the mask generation.
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
*
|
|
* \return The corresponding RSA PSS signature algorithm.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_RSA_PSS(hash_alg) \
|
|
(PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
#define PSA_ALG_IS_RSA_PSS(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
|
|
|
|
#define PSA_ALG_DSA_BASE ((psa_algorithm_t)0x10040000)
|
|
/** DSA signature with hashing.
|
|
*
|
|
* This is the signature scheme defined by FIPS 186-4,
|
|
* with a random per-message secret number (*k*).
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
*
|
|
* \return The corresponding DSA signature algorithm.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_DSA(hash_alg) \
|
|
(PSA_ALG_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
#define PSA_ALG_DETERMINISTIC_DSA_BASE ((psa_algorithm_t)0x10050000)
|
|
#define PSA_ALG_DSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000)
|
|
#define PSA_ALG_DETERMINISTIC_DSA(hash_alg) \
|
|
(PSA_ALG_DETERMINISTIC_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
#define PSA_ALG_IS_DSA(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
|
|
PSA_ALG_DSA_BASE)
|
|
#define PSA_ALG_DSA_IS_DETERMINISTIC(alg) \
|
|
(((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
|
|
#define PSA_ALG_IS_DETERMINISTIC_DSA(alg) \
|
|
(PSA_ALG_IS_DSA(alg) && PSA_ALG_DSA_IS_DETERMINISTIC(alg))
|
|
#define PSA_ALG_IS_RANDOMIZED_DSA(alg) \
|
|
(PSA_ALG_IS_DSA(alg) && !PSA_ALG_DSA_IS_DETERMINISTIC(alg))
|
|
|
|
#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
|
|
/** ECDSA signature with hashing.
|
|
*
|
|
* This is the ECDSA signature scheme defined by ANSI X9.62,
|
|
* with a random per-message secret number (*k*).
|
|
*
|
|
* The representation of the signature as a byte string consists of
|
|
* the concatentation of the signature values *r* and *s*. Each of
|
|
* *r* and *s* is encoded as an *N*-octet string, where *N* is the length
|
|
* of the base point of the curve in octets. Each value is represented
|
|
* in big-endian order (most significant octet first).
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
*
|
|
* \return The corresponding ECDSA signature algorithm.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_ECDSA(hash_alg) \
|
|
(PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
/** ECDSA signature without hashing.
|
|
*
|
|
* This is the same signature scheme as #PSA_ALG_ECDSA(), but
|
|
* without specifying a hash algorithm. This algorithm may only be
|
|
* used to sign or verify a sequence of bytes that should be an
|
|
* already-calculated hash. Note that the input is padded with
|
|
* zeros on the left or truncated on the left as required to fit
|
|
* the curve size.
|
|
*/
|
|
#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
|
|
#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
|
|
/** Deterministic ECDSA signature with hashing.
|
|
*
|
|
* This is the deterministic ECDSA signature scheme defined by RFC 6979.
|
|
*
|
|
* The representation of a signature is the same as with #PSA_ALG_ECDSA().
|
|
*
|
|
* Note that when this algorithm is used for verification, signatures
|
|
* made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
|
|
* same private key are accepted. In other words,
|
|
* #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
|
|
* #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
*
|
|
* \return The corresponding deterministic ECDSA signature
|
|
* algorithm.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
|
|
(PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
#define PSA_ALG_IS_ECDSA(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
|
|
PSA_ALG_ECDSA_BASE)
|
|
#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
|
|
(((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
|
|
#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
|
|
(PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
|
|
#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
|
|
(PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
|
|
|
|
/** Get the hash used by a hash-and-sign signature algorithm.
|
|
*
|
|
* A hash-and-sign algorithm is a signature algorithm which is
|
|
* composed of two phases: first a hashing phase which does not use
|
|
* the key and produces a hash of the input message, then a signing
|
|
* phase which only uses the hash and the key and not the message
|
|
* itself.
|
|
*
|
|
* \param alg A signature algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_SIGN(\p alg) is true).
|
|
*
|
|
* \return The underlying hash algorithm if \p alg is a hash-and-sign
|
|
* algorithm.
|
|
* \return 0 if \p alg is a signature algorithm that does not
|
|
* follow the hash-and-sign structure.
|
|
* \return Unspecified if \p alg is not a signature algorithm or
|
|
* if it is not supported by the implementation.
|
|
*/
|
|
#define PSA_ALG_SIGN_GET_HASH(alg) \
|
|
(PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
|
|
PSA_ALG_IS_DSA(alg) || PSA_ALG_IS_ECDSA(alg) ? \
|
|
((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
|
|
((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
|
|
0)
|
|
|
|
/** RSA PKCS#1 v1.5 encryption.
|
|
*/
|
|
#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
|
|
|
|
#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
|
|
/** RSA OAEP encryption.
|
|
*
|
|
* This is the encryption scheme defined by RFC 8017
|
|
* (PKCS#1: RSA Cryptography Specifications) under the name
|
|
* RSAES-OAEP, with the message generation function MGF1.
|
|
*
|
|
* \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
|
|
* for MGF1.
|
|
*
|
|
* \return The corresponding RSA OAEP signature algorithm.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_RSA_OAEP(hash_alg) \
|
|
(PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
#define PSA_ALG_IS_RSA_OAEP(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
|
|
#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
|
|
(PSA_ALG_IS_RSA_OAEP(alg) ? \
|
|
((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
|
|
0)
|
|
|
|
#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x30000100)
|
|
/** Macro to build an HKDF algorithm.
|
|
*
|
|
* For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
*
|
|
* \return The corresponding HKDF algorithm.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_HKDF(hash_alg) \
|
|
(PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
/** Whether the specified algorithm is an HKDF algorithm.
|
|
*
|
|
* HKDF is a family of key derivation algorithms that are based on a hash
|
|
* function and the HMAC construction.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
* key derivation algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_HKDF(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
|
|
#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
|
|
(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x30000200)
|
|
/** Macro to build a TLS-1.2 PRF algorithm.
|
|
*
|
|
* TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
|
|
* specified in Section 5 of RFC 5246. It is based on HMAC and can be
|
|
* used with either SHA-256 or SHA-384.
|
|
*
|
|
* For the application to TLS-1.2, the salt and label arguments passed
|
|
* to psa_key_derivation() are what's called 'seed' and 'label' in RFC 5246,
|
|
* respectively. For example, for TLS key expansion, the salt is the
|
|
* concatenation of ServerHello.Random + ClientHello.Random,
|
|
* while the label is "key expansion".
|
|
*
|
|
* For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
|
|
* TLS 1.2 PRF using HMAC-SHA-256.
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
*
|
|
* \return The corresponding TLS-1.2 PRF algorithm.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_TLS12_PRF(hash_alg) \
|
|
(PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
* key derivation algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_TLS12_PRF(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
|
|
#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
|
|
(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x30000300)
|
|
/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
|
|
*
|
|
* In a pure-PSK handshake in TLS 1.2, the master secret is derived
|
|
* from the PreSharedKey (PSK) through the application of padding
|
|
* (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
|
|
* The latter is based on HMAC and can be used with either SHA-256
|
|
* or SHA-384.
|
|
*
|
|
* For the application to TLS-1.2, the salt passed to psa_key_derivation()
|
|
* (and forwarded to the TLS-1.2 PRF) is the concatenation of the
|
|
* ClientHello.Random + ServerHello.Random, while the label is "master secret"
|
|
* or "extended master secret".
|
|
*
|
|
* For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
|
|
* TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
|
|
*
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
*
|
|
* \return The corresponding TLS-1.2 PSK to MS algorithm.
|
|
* \return Unspecified if \p alg is not a supported
|
|
* hash algorithm.
|
|
*/
|
|
#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
|
|
(PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
* key derivation algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
|
|
#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
|
|
(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x010fffff)
|
|
|
|
/** Use a shared secret as is.
|
|
*
|
|
* Specify this algorithm as the selection component of a key agreement
|
|
* to use the raw result of the key agreement as key material.
|
|
*
|
|
* \warning The raw result of a key agreement algorithm such as finite-field
|
|
* Diffie-Hellman or elliptic curve Diffie-Hellman has biases and should
|
|
* not be used directly as key material. It can however be used as the secret
|
|
* input in a key derivation algorithm.
|
|
*/
|
|
#define PSA_ALG_SELECT_RAW ((psa_algorithm_t)0x31000001)
|
|
|
|
#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
|
|
(((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
|
|
|
|
#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
|
|
((alg) & ~PSA_ALG_KEY_DERIVATION_MASK)
|
|
|
|
#define PSA_ALG_FFDH_BASE ((psa_algorithm_t)0x22100000)
|
|
/** The Diffie-Hellman key agreement algorithm.
|
|
*
|
|
* This algorithm combines the finite-field Diffie-Hellman (DH) key
|
|
* agreement, also known as Diffie-Hellman-Merkle (DHM) key agreement,
|
|
* to produce a shared secret from a private key and the peer's
|
|
* public key, with a key selection or key derivation algorithm to produce
|
|
* one or more shared keys and other shared cryptographic material.
|
|
*
|
|
* The shared secret produced by key agreement and passed as input to the
|
|
* derivation or selection algorithm \p kdf_alg is the shared secret
|
|
* `g^{ab}` in big-endian format.
|
|
* It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
|
|
* in bits.
|
|
*
|
|
* \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
|
|
* that #PSA_ALG_IS_KEY_DERIVATION(\p hash_alg) is true)
|
|
* or a key selection algorithm (\c PSA_ALG_XXX value such
|
|
* that #PSA_ALG_IS_KEY_SELECTION(\p hash_alg) is true).
|
|
*
|
|
* \return The Diffie-Hellman algorithm with the specified
|
|
* selection or derivation algorithm.
|
|
*/
|
|
#define PSA_ALG_FFDH(kdf_alg) \
|
|
(PSA_ALG_FFDH_BASE | ((kdf_alg) & PSA_ALG_KEY_DERIVATION_MASK))
|
|
/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
|
|
*
|
|
* This includes every supported key selection or key agreement algorithm
|
|
* for the output of the Diffie-Hellman calculation.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
* key agreement algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_FFDH(alg) \
|
|
(PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH_BASE)
|
|
|
|
#define PSA_ALG_ECDH_BASE ((psa_algorithm_t)0x22200000)
|
|
/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
|
|
*
|
|
* This algorithm combines the elliptic curve Diffie-Hellman key
|
|
* agreement to produce a shared secret from a private key and the peer's
|
|
* public key, with a key selection or key derivation algorithm to produce
|
|
* one or more shared keys and other shared cryptographic material.
|
|
*
|
|
* The shared secret produced by key agreement and passed as input to the
|
|
* derivation or selection algorithm \p kdf_alg is the x-coordinate of
|
|
* the shared secret point. It is always `ceiling(m / 8)` bytes long where
|
|
* `m` is the bit size associated with the curve, i.e. the bit size of the
|
|
* order of the curve's coordinate field. When `m` is not a multiple of 8,
|
|
* the byte containing the most significant bit of the shared secret
|
|
* is padded with zero bits. The byte order is either little-endian
|
|
* or big-endian depending on the curve type.
|
|
*
|
|
* - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
|
|
* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
|
|
* in little-endian byte order.
|
|
* The bit size is 448 for Curve448 and 255 for Curve25519.
|
|
* - For Weierstrass curves over prime fields (curve types
|
|
* `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
|
|
* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
|
|
* in big-endian byte order.
|
|
* The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
|
|
* - For Weierstrass curves over binary fields (curve types
|
|
* `PSA_ECC_CURVE_SECTXXX`),
|
|
* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
|
|
* in big-endian byte order.
|
|
* The bit size is `m` for the field `F_{2^m}`.
|
|
*
|
|
* \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
|
|
* that #PSA_ALG_IS_KEY_DERIVATION(\p hash_alg) is true)
|
|
* or a selection algorithm (\c PSA_ALG_XXX value such
|
|
* that #PSA_ALG_IS_KEY_SELECTION(\p hash_alg) is true).
|
|
*
|
|
* \return The Diffie-Hellman algorithm with the specified
|
|
* selection or derivation algorithm.
|
|
*/
|
|
#define PSA_ALG_ECDH(kdf_alg) \
|
|
(PSA_ALG_ECDH_BASE | ((kdf_alg) & PSA_ALG_KEY_DERIVATION_MASK))
|
|
/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
|
|
* algorithm.
|
|
*
|
|
* This includes every supported key selection or key agreement algorithm
|
|
* for the output of the Diffie-Hellman calculation.
|
|
*
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
*
|
|
* \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
|
|
* 0 otherwise.
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
* key agreement algorithm identifier.
|
|
*/
|
|
#define PSA_ALG_IS_ECDH(alg) \
|
|
(PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH_BASE)
|
|
|
|
/**@}*/
|
|
|
|
/** \defgroup key_lifetimes Key lifetimes
|
|
* @{
|
|
*/
|
|
|
|
/** A volatile key only exists as long as the handle to it is not closed.
|
|
* The key material is guaranteed to be erased on a power reset.
|
|
*/
|
|
#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
|
|
|
|
/** The default storage area for persistent keys.
|
|
*
|
|
* A persistent key remains in storage until it is explicitly destroyed or
|
|
* until the corresponding storage area is wiped. This specification does
|
|
* not define any mechanism to wipe a storage area, but implementations may
|
|
* provide their own mechanism (for example to perform a factory reset,
|
|
* to prepare for device refurbishment, or to uninstall an application).
|
|
*
|
|
* This lifetime value is the default storage area for the calling
|
|
* application. Implementations may offer other storage areas designated
|
|
* by other lifetime values as implementation-specific extensions.
|
|
*/
|
|
#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
|
|
|
|
/**@}*/
|
|
|
|
/** \defgroup policy Key policies
|
|
* @{
|
|
*/
|
|
|
|
/** Whether the key may be exported.
|
|
*
|
|
* A public key or the public part of a key pair may always be exported
|
|
* regardless of the value of this permission flag.
|
|
*
|
|
* If a key does not have export permission, implementations shall not
|
|
* allow the key to be exported in plain form from the cryptoprocessor,
|
|
* whether through psa_export_key() or through a proprietary interface.
|
|
* The key may however be exportable in a wrapped form, i.e. in a form
|
|
* where it is encrypted by another key.
|
|
*/
|
|
#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
|
|
|
|
/** Whether the key may be used to encrypt a message.
|
|
*
|
|
* This flag allows the key to be used for a symmetric encryption operation,
|
|
* for an AEAD encryption-and-authentication operation,
|
|
* or for an asymmetric encryption operation,
|
|
* if otherwise permitted by the key's type and policy.
|
|
*
|
|
* For a key pair, this concerns the public key.
|
|
*/
|
|
#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
|
|
|
|
/** Whether the key may be used to decrypt a message.
|
|
*
|
|
* This flag allows the key to be used for a symmetric decryption operation,
|
|
* for an AEAD decryption-and-verification operation,
|
|
* or for an asymmetric decryption operation,
|
|
* if otherwise permitted by the key's type and policy.
|
|
*
|
|
* For a key pair, this concerns the private key.
|
|
*/
|
|
#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
|
|
|
|
/** Whether the key may be used to sign a message.
|
|
*
|
|
* This flag allows the key to be used for a MAC calculation operation
|
|
* or for an asymmetric signature operation,
|
|
* if otherwise permitted by the key's type and policy.
|
|
*
|
|
* For a key pair, this concerns the private key.
|
|
*/
|
|
#define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400)
|
|
|
|
/** Whether the key may be used to verify a message signature.
|
|
*
|
|
* This flag allows the key to be used for a MAC verification operation
|
|
* or for an asymmetric signature verification operation,
|
|
* if otherwise permitted by by the key's type and policy.
|
|
*
|
|
* For a key pair, this concerns the public key.
|
|
*/
|
|
#define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800)
|
|
|
|
/** Whether the key may be used to derive other keys.
|
|
*/
|
|
#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
|
|
|
|
/**@}*/
|
|
|
|
#endif /* PSA_CRYPTO_VALUES_H */
|