target/arm: implement SHA-3 instructions

This implements emulation of the new SHA-3 instructions that have
been added as an optional extensions to the ARMv8 Crypto Extensions
in ARM v8.2.

Backports commit cd270ade74ea86467f393a9fb9c54c4f1148c28f from qemu
This commit is contained in:
Ard Biesheuvel 2018-03-07 08:43:31 -05:00 committed by Lioncash
parent 66b8b01f09
commit 72078a7674
No known key found for this signature in database
GPG Key ID: 4E3C3CC1031BA9C7

View File

@ -11742,62 +11742,6 @@ static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
tcg_temp_free_ptr(tcg_ctx, tcg_rn_ptr);
}
/* Crypto four-register
* 31 23 22 21 20 16 15 14 10 9 5 4 0
* ---------------------------------------------------
* | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
* ---------------------------------------------------
*/
static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int op0 = extract32(insn, 21, 2);
int rm = extract32(insn, 16, 5);
int ra = extract32(insn, 10, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
int pass;
if (op0 > 1 || !arm_dc_feature(s, ARM_FEATURE_V8_SHA3)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_op1 = tcg_temp_new_i64(tcg_ctx);
tcg_op2 = tcg_temp_new_i64(tcg_ctx);
tcg_op3 = tcg_temp_new_i64(tcg_ctx);
tcg_res[0] = tcg_temp_new_i64(tcg_ctx);
tcg_res[1] = tcg_temp_new_i64(tcg_ctx);
for (pass = 0; pass < 2; pass++) {
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element(s, tcg_op2, rm, pass, MO_64);
read_vec_element(s, tcg_op3, ra, pass, MO_64);
if (op0 == 0) {
/* EOR3 */
tcg_gen_xor_i64(tcg_ctx, tcg_res[pass], tcg_op2, tcg_op3);
} else {
/* BCAX */
tcg_gen_andc_i64(tcg_ctx, tcg_res[pass], tcg_op2, tcg_op3);
}
tcg_gen_xor_i64(tcg_ctx, tcg_res[pass], tcg_res[pass], tcg_op1);
}
write_vec_element(s, tcg_res[0], rd, 0, MO_64);
write_vec_element(s, tcg_res[1], rd, 1, MO_64);
tcg_temp_free(tcg_ctx, tcg_op1);
tcg_temp_free(tcg_ctx, tcg_op2);
tcg_temp_free(tcg_ctx, tcg_op3);
tcg_temp_free(tcg_ctx, tcg_res[0]);
tcg_temp_free(tcg_ctx, tcg_res[1]);
}
/* Crypto three-reg SHA512
* 31 21 20 16 15 14 13 12 11 10 9 5 4 0
* +-----------------------+------+---+---+-----+--------+------+------+
@ -11930,6 +11874,124 @@ static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
tcg_temp_free_ptr(tcg_ctx, tcg_rn_ptr);
}
/* Crypto four-register
* 31 23 22 21 20 16 15 14 10 9 5 4 0
* +-------------------+-----+------+---+------+------+------+
* | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
* +-------------------+-----+------+---+------+------+------+
*/
static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int op0 = extract32(insn, 21, 2);
int rm = extract32(insn, 16, 5);
int ra = extract32(insn, 10, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int feature;
switch (op0) {
case 0: /* EOR3 */
case 1: /* BCAX */
feature = ARM_FEATURE_V8_SHA3;
break;
default:
unallocated_encoding(s);
return;
}
if (!arm_dc_feature(s, feature)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (op0 < 2) {
TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
int pass;
tcg_op1 = tcg_temp_new_i64(tcg_ctx);
tcg_op2 = tcg_temp_new_i64(tcg_ctx);
tcg_op3 = tcg_temp_new_i64(tcg_ctx);
tcg_res[0] = tcg_temp_new_i64(tcg_ctx);
tcg_res[1] = tcg_temp_new_i64(tcg_ctx);
for (pass = 0; pass < 2; pass++) {
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element(s, tcg_op2, rm, pass, MO_64);
read_vec_element(s, tcg_op3, ra, pass, MO_64);
if (op0 == 0) {
/* EOR3 */
tcg_gen_xor_i64(tcg_ctx, tcg_res[pass], tcg_op2, tcg_op3);
} else {
/* BCAX */
tcg_gen_andc_i64(tcg_ctx, tcg_res[pass], tcg_op2, tcg_op3);
}
tcg_gen_xor_i64(tcg_ctx, tcg_res[pass], tcg_res[pass], tcg_op1);
}
write_vec_element(s, tcg_res[0], rd, 0, MO_64);
write_vec_element(s, tcg_res[1], rd, 1, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
tcg_temp_free_i64(tcg_ctx, tcg_op3);
tcg_temp_free_i64(tcg_ctx, tcg_res[0]);
tcg_temp_free_i64(tcg_ctx, tcg_res[1]);
} else {
g_assert_not_reached();
}
}
/* Crypto XAR
* 31 21 20 16 15 10 9 5 4 0
* +-----------------------+------+--------+------+------+
* | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
* +-----------------------+------+--------+------+------+
*/
static void disas_crypto_xar(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rm = extract32(insn, 16, 5);
int imm6 = extract32(insn, 10, 6);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
int pass;
if (!arm_dc_feature(s, ARM_FEATURE_V8_SHA3)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_op1 = tcg_temp_new_i64(tcg_ctx);
tcg_op2 = tcg_temp_new_i64(tcg_ctx);
tcg_res[0] = tcg_temp_new_i64(tcg_ctx);
tcg_res[1] = tcg_temp_new_i64(tcg_ctx);
for (pass = 0; pass < 2; pass++) {
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element(s, tcg_op2, rm, pass, MO_64);
tcg_gen_xor_i64(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2);
tcg_gen_rotri_i64(tcg_ctx, tcg_res[pass], tcg_res[pass], imm6);
}
write_vec_element(s, tcg_res[0], rd, 0, MO_64);
write_vec_element(s, tcg_res[1], rd, 1, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
tcg_temp_free_i64(tcg_ctx, tcg_res[0]);
tcg_temp_free_i64(tcg_ctx, tcg_res[1]);
}
/* C3.6 Data processing - SIMD, inc Crypto
*
* As the decode gets a little complex we are using a table based
@ -11962,6 +12024,7 @@ static const AArch64DecodeTable data_proc_simd[] = {
{ 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
{ 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
{ 0xce000000, 0xff808000, disas_crypto_four_reg },
{ 0xce800000, 0xffe00000, disas_crypto_xar },
{ 0x00000000, 0x00000000, NULL }
};