diff --git a/qemu/target-arm/cpu.h b/qemu/target-arm/cpu.h index fbd506cd..dee62b3f 100644 --- a/qemu/target-arm/cpu.h +++ b/qemu/target-arm/cpu.h @@ -980,18 +980,34 @@ static inline bool arm_is_secure(CPUARMState *env) /* Return true if the specified exception level is running in AArch64 state. */ static inline bool arm_el_is_aa64(CPUARMState *env, int el) { - /* We don't currently support EL2, and this isn't valid for EL0 - * (if we're in EL0, is_a64() is what you want, and if we're not in EL0 + /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, + * and if we're not in EL0 then the state of EL0 isn't well defined.) * then the state of EL0 isn't well defined.) */ - assert(el == 1 || el == 3); + assert(el >= 1 && el <= 3); + bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); - /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This - * is a QEMU-imposed simplification which we may wish to change later. - * If we in future support EL2 and/or EL3, then the state of lower - * exception levels is controlled by the HCR.RW and SCR.RW bits. + /* The highest exception level is always at the maximum supported + * register width, and then lower levels have a register width controlled + * by bits in the SCR or HCR registers. */ - return arm_feature(env, ARM_FEATURE_AARCH64); + if (el == 3) { + return aa64; + } + + if (arm_feature(env, ARM_FEATURE_EL3)) { + aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); + } + + if (el == 2) { + return aa64; + } + + if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { + aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); + } + + return aa64; } /* Function for determining whether guest cp register reads and writes should