# AArch32 VFP instruction descriptions (conditional insns) # # Copyright (c) 2019 Linaro, Ltd # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, see . # # This file is processed by scripts/decodetree.py # # Encodings for the conditional VFP instructions are here: # generally anything matching A32 # cccc 11.. .... .... .... 101. .... .... # and T32 # 1110 110. .... .... .... 101. .... .... # 1110 1110 .... .... .... 101. .... .... # (but those patterns might also cover some Neon instructions, # which do not live in this file.) # VFP registers have an odd encoding with a four-bit field # and a one-bit field which are assembled in different orders # depending on whether the register is double or single precision. # Each individual instruction function must do the checks for # "double register selected but CPU does not have double support" # and "double register number has bit 4 set but CPU does not # support D16-D31" (which should UNDEF). %vm_dp 5:1 0:4 %vm_sp 0:4 5:1 %vn_dp 7:1 16:4 %vn_sp 16:4 7:1 %vd_dp 22:1 12:4 %vd_sp 12:4 22:1 %vmov_idx_b 21:1 5:2 %vmov_idx_h 21:1 6:1 # VMOV scalar to general-purpose register; note that this does # include some Neon cases. VMOV_to_gp ---- 1110 u:1 1. 1 .... rt:4 1011 ... 1 0000 \ vn=%vn_dp size=0 index=%vmov_idx_b VMOV_to_gp ---- 1110 u:1 0. 1 .... rt:4 1011 ..1 1 0000 \ vn=%vn_dp size=1 index=%vmov_idx_h VMOV_to_gp ---- 1110 0 0 index:1 1 .... rt:4 1011 .00 1 0000 \ vn=%vn_dp size=2 u=0 VMOV_from_gp ---- 1110 0 1. 0 .... rt:4 1011 ... 1 0000 \ vn=%vn_dp size=0 index=%vmov_idx_b VMOV_from_gp ---- 1110 0 0. 0 .... rt:4 1011 ..1 1 0000 \ vn=%vn_dp size=1 index=%vmov_idx_h VMOV_from_gp ---- 1110 0 0 index:1 0 .... rt:4 1011 .00 1 0000 \ vn=%vn_dp size=2 VDUP ---- 1110 1 b:1 q:1 0 .... rt:4 1011 . 0 e:1 1 0000 \ vn=%vn_dp VMSR_VMRS ---- 1110 111 l:1 reg:4 rt:4 1010 0001 0000 VMOV_single ---- 1110 000 l:1 .... rt:4 1010 . 001 0000 \ vn=%vn_sp VMOV_64_sp ---- 1100 010 op:1 rt2:4 rt:4 1010 00.1 .... \ vm=%vm_sp VMOV_64_dp ---- 1100 010 op:1 rt2:4 rt:4 1011 00.1 .... \ vm=%vm_dp # Note that the half-precision variants of VLDR and VSTR are # not part of this decodetree at all because they have bits [9:8] == 0b01 VLDR_VSTR_sp ---- 1101 u:1 .0 l:1 rn:4 .... 1010 imm:8 \ vd=%vd_sp VLDR_VSTR_dp ---- 1101 u:1 .0 l:1 rn:4 .... 1011 imm:8 \ vd=%vd_dp