using Gee.External.Capstone; using Gee.External.Capstone.X86; using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Reflection; using System.Text; using System.Threading.Tasks; using UnicornManaged; using UnicornManaged.Const; namespace UnicornSamples { internal class X86Sample32 { private const Int64 ADDRESS = 0x1000000; public static void X86Code32() { Byte[] X86_CODE32 = { // INC ecx; DEC edx 0x41, 0x4a }; Run(X86_CODE32); } public static void X86Code32InvalidMemRead() { Byte[] X86_CODE32_MEM_READ = { // mov ecx,[0xaaaaaaaa]; INC ecx; DEC edx 0x8B, 0x0D, 0xAA, 0xAA, 0xAA, 0xAA, 0x41, 0x4a }; Run(X86_CODE32_MEM_READ); } public static void X86Code32InvalidMemWriteWithRuntimeFix() { Byte[] X86_CODE32_MEM_WRITE = { // mov [0xaaaaaaaa], ecx; INC ecx; DEC edx 0x89, 0x0D, 0xAA, 0xAA, 0xAA, 0xAA, 0x41, 0x4a }; Run(X86_CODE32_MEM_WRITE); } public static void X86Code32InOut() { Byte[] X86_CODE32_INOUT = { // INC ecx; IN AL, 0x3f; DEC edx; OUT 0x46, AL; INC ebx 0x41, 0xE4, 0x3F, 0x4a, 0xE6, 0x46, 0x43 }; Run(X86_CODE32_INOUT); } private static void Run(Byte[] code, Boolean raiseException = false) { Console.WriteLine(); var stackTrace = new StackTrace(); var stackFrame = stackTrace.GetFrames()[1]; var methodName = stackFrame.GetMethod().Name; Console.WriteLine("*** Start: " + methodName); Exception e = null; try { RunTest(code, ADDRESS, Common.UC_MODE_32); } catch (UnicornEngineException ex) { e = ex; } if (!raiseException && e != null) { Console.Error.WriteLine("Emulation FAILED! " + e.Message); } Console.WriteLine("*** End: " + methodName); Console.WriteLine(); } private static void RunTest(Byte[] code, Int64 address, Int32 mode) { using (var u = new Unicorn(Common.UC_ARCH_X86, mode)) using (var disassembler = CapstoneDisassembler.CreateX86Disassembler(DisassembleMode.Bit32)) { Console.WriteLine("Unicorn version: {0}", u.Version()); // map 2MB of memory for this emulation u.MemMap(address, 2 * 1024 * 1024, Common.UC_PROT_ALL); // initialize machine registers u.RegWrite(X86.UC_X86_REG_EAX, 0x1234); u.RegWrite(X86.UC_X86_REG_ECX, 0x1234); u.RegWrite(X86.UC_X86_REG_EDX, 0x7890); // write machine code to be emulated to memory u.MemWrite(address, code); // initialize machine registers u.RegWrite(X86.UC_X86_REG_ESP, Utils.Int64ToBytes(address + 0x200000)); // handle IN & OUT instruction u.AddInHook(InHookCallback); u.AddOutHook(OutHookCallback); // tracing all instructions by having @begin > @end u.AddCodeHook((uc, addr, size, userData) => CodeHookCallback(disassembler, uc, addr, size, userData), 1, 0); // handle interrupt ourself u.AddInterruptHook(InterruptHookCallback); // handle SYSCALL u.AddSyscallHook(SyscallHookCallback); // intercept invalid memory events u.AddEventMemHook(MemMapHookCallback, Common.UC_HOOK_MEM_READ_UNMAPPED | Common.UC_HOOK_MEM_WRITE_UNMAPPED); Console.WriteLine(">>> Start tracing code"); // emulate machine code in infinite time u.EmuStart(address, address + code.Length, 0u, 0u); // print registers var ecx = u.RegRead(X86.UC_X86_REG_ECX); var edx = u.RegRead(X86.UC_X86_REG_EDX); var eax = u.RegRead(X86.UC_X86_REG_EAX); Console.WriteLine("[!] EAX = {0}", eax.ToString("X")); Console.WriteLine("[!] ECX = {0}", ecx.ToString("X")); Console.WriteLine("[!] EDX = {0}", edx.ToString("X")); Console.WriteLine(">>> Emulation Done!"); } } private static Int32 InHookCallback(Unicorn u, Int32 port, Int32 size, Object userData) { var eip = u.RegRead(X86.UC_X86_REG_EIP); Console.WriteLine("[!] Reading from port 0x{0}, size: {1}, address: 0x{2}", port.ToString("X"), size.ToString("X"), eip.ToString("X")); var res = 0; switch (size) { case 1: // read 1 byte to AL res = 0xf1; break; case 2: // read 2 byte to AX res = 0xf2; break; case 4: // read 4 byte to EAX res = 0xf4; break; } Console.WriteLine("[!] Return value: {0}", res.ToString("X")); return res; } private static void OutHookCallback(Unicorn u, Int32 port, Int32 size, Int32 value, Object userData) { var eip = u.RegRead(X86.UC_X86_REG_EIP); Console.WriteLine("[!] Writing to port 0x{0}, size: {1}, value: 0x{2}, address: 0x{3}", port.ToString("X"), size.ToString("X"), value.ToString("X"), eip.ToString("X")); // confirm that value is indeed the value of AL/ AX / EAX var v = 0L; var regName = String.Empty; switch (size) { case 1: // read 1 byte in AL v = u.RegRead(X86.UC_X86_REG_AL); regName = "AL"; break; case 2: // read 2 byte in AX v = u.RegRead(X86.UC_X86_REG_AX); regName = "AX"; break; case 4: // read 4 byte in EAX v = u.RegRead(X86.UC_X86_REG_EAX); regName = "EAX"; break; } Console.WriteLine("[!] Register {0}: {1}", regName, v.ToString("X")); } private static Boolean MemMapHookCallback(Unicorn u, Int32 eventType, Int64 address, Int32 size, Int64 value, Object userData) { if (eventType == Common.UC_MEM_WRITE_UNMAPPED) { Console.WriteLine("[!] Missing memory is being WRITE at 0x{0}, data size = {1}, data value = 0x{2}. Map memory.", address.ToString("X"), size.ToString("X"), value.ToString("X")); u.MemMap(0xaaaa0000, 2 * 1024 * 1024, Common.UC_PROT_ALL); return true; } else { return false; } } private static void CodeHookCallback1( CapstoneDisassembler disassembler, Unicorn u, Int64 addr, Int32 size, Object userData) { Console.Write("[+] 0x{0}: ", addr.ToString("X")); var eipBuffer = new Byte[4]; u.RegRead(X86.UC_X86_REG_EIP, eipBuffer); var effectiveSize = Math.Min(16, size); var tmp = new Byte[effectiveSize]; u.MemRead(addr, tmp); var sb = new StringBuilder(); foreach (var t in tmp) { sb.AppendFormat("{0} ", (0xFF & t).ToString("X")); } Console.Write("{0,-20}", sb); Console.WriteLine(Utils.Disassemble(disassembler, tmp)); } private static void CodeHookCallback( CapstoneDisassembler disassembler, Unicorn u, Int64 addr, Int32 size, Object userData) { Console.Write("[+] 0x{0}: ", addr.ToString("X")); var eipBuffer = new Byte[4]; u.RegRead(X86.UC_X86_REG_EIP, eipBuffer); var effectiveSize = Math.Min(16, size); var tmp = new Byte[effectiveSize]; u.MemRead(addr, tmp); var sb = new StringBuilder(); foreach (var t in tmp) { sb.AppendFormat("{0} ", (0xFF & t).ToString("X")); } Console.Write("{0,-20}", sb); Console.WriteLine(Utils.Disassemble(disassembler, tmp)); } private static void SyscallHookCallback(Unicorn u, Object userData) { var eaxBuffer = new Byte[4]; u.RegRead(X86.UC_X86_REG_EAX, eaxBuffer); var eax = Utils.ToInt(eaxBuffer); Console.WriteLine("[!] Syscall EAX = 0x{0}", eax.ToString("X")); u.EmuStop(); } private static void InterruptHookCallback(Unicorn u, Int32 intNumber, Object userData) { // only handle Linux syscall if (intNumber != 0x80) { return; } var eaxBuffer = new Byte[4]; var eipBuffer = new Byte[4]; u.RegRead(X86.UC_X86_REG_EAX, eaxBuffer); u.RegRead(X86.UC_X86_REG_EIP, eipBuffer); var eax = Utils.ToInt(eaxBuffer); var eip = Utils.ToInt(eipBuffer); switch (eax) { default: Console.WriteLine("[!] Interrupt 0x{0} num {1}, EAX=0x{2}", eip.ToString("X"), intNumber.ToString("X"), eax.ToString("X")); break; case 1: // sys_exit Console.WriteLine("[!] Interrupt 0x{0} num {1}, SYS_EXIT", eip.ToString("X"), intNumber.ToString("X")); u.EmuStop(); break; case 4: // sys_write // ECX = buffer address var ecxBuffer = new Byte[4]; // EDX = buffer size var edxBuffer = new Byte[4]; u.RegRead(X86.UC_X86_REG_ECX, ecxBuffer); u.RegRead(X86.UC_X86_REG_EDX, edxBuffer); var ecx = Utils.ToInt(ecxBuffer); var edx = Utils.ToInt(edxBuffer); // read the buffer in var size = Math.Min(256, edx); var buffer = new Byte[size]; u.MemRead(ecx, buffer); var content = Encoding.Default.GetString(buffer); Console.WriteLine( "[!] Interrupt 0x{0}: num {1}, SYS_WRITE. buffer = 0x{2}, size = , content = '{3}'", eip.ToString("X"), ecx.ToString("X"), edx.ToString("X"), content); break; } } } }