/* Unicorn Emulator Engine */ /* By Nguyen Anh Quynh , 2015 */ #include "hw/boards.h" #include "hw/arm/arm.h" #include "sysemu/cpus.h" #include "unicorn.h" #include "cpu.h" #include "unicorn_common.h" #include "uc_priv.h" const int ARM64_REGS_STORAGE_SIZE = offsetof(CPUARMState, tlb_table); static void arm64_set_pc(struct uc_struct *uc, uint64_t address) { ((CPUARMState *)uc->current_cpu->env_ptr)->pc = address; } void arm64_release(void* ctx); void arm64_release(void* ctx) { TCGContext *s = (TCGContext *) ctx; g_free(s->tb_ctx.tbs); struct uc_struct* uc = s->uc; ARMCPU* cpu = (ARMCPU*) uc->cpu; g_free(cpu->cpreg_indexes); g_free(cpu->cpreg_values); g_free(cpu->cpreg_vmstate_indexes); g_free(cpu->cpreg_vmstate_values); release_common(ctx); } void arm64_reg_reset(struct uc_struct *uc) { CPUArchState *env = uc->cpu->env_ptr; memset(env->xregs, 0, sizeof(env->xregs)); env->pc = 0; } int arm64_reg_read(struct uc_struct *uc, unsigned int *regs, void **vals, int count) { CPUState *mycpu = uc->cpu; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; void *value = vals[i]; // V & Q registers are the same if (regid >= UC_ARM64_REG_V0 && regid <= UC_ARM64_REG_V31) { regid += UC_ARM64_REG_Q0 - UC_ARM64_REG_V0; } if (regid >= UC_ARM64_REG_X0 && regid <= UC_ARM64_REG_X28) { *(int64_t *)value = ARM_CPU(uc, mycpu)->env.xregs[regid - UC_ARM64_REG_X0]; } else if (regid >= UC_ARM64_REG_W0 && regid <= UC_ARM64_REG_W30) { *(int32_t *)value = READ_DWORD(ARM_CPU(uc, mycpu)->env.xregs[regid - UC_ARM64_REG_W0]); } else if (regid >= UC_ARM64_REG_Q0 && regid <= UC_ARM64_REG_Q31) { float64 *dst = (float64*) value; uint32_t reg_index = 2*(regid - UC_ARM64_REG_Q0); dst[0] = ARM_CPU(uc, mycpu)->env.vfp.regs[reg_index]; dst[1] = ARM_CPU(uc, mycpu)->env.vfp.regs[reg_index+1]; } else if (regid >= UC_ARM64_REG_D0 && regid <= UC_ARM64_REG_D31) { *(float64*)value = ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_D0)]; } else if (regid >= UC_ARM64_REG_S0 && regid <= UC_ARM64_REG_S31) { *(int32_t*)value = READ_DWORD(ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_S0)]); } else if (regid >= UC_ARM64_REG_H0 && regid <= UC_ARM64_REG_H31) { *(int16_t*)value = READ_WORD(ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_H0)]); } else if (regid >= UC_ARM64_REG_B0 && regid <= UC_ARM64_REG_B31) { *(int8_t*)value = READ_BYTE_L(ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_B0)]); } else { switch(regid) { default: break; case UC_ARM64_REG_X29: *(int64_t *)value = ARM_CPU(uc, mycpu)->env.xregs[29]; break; case UC_ARM64_REG_X30: *(int64_t *)value = ARM_CPU(uc, mycpu)->env.xregs[30]; break; case UC_ARM64_REG_PC: *(uint64_t *)value = ARM_CPU(uc, mycpu)->env.pc; break; case UC_ARM64_REG_SP: *(int64_t *)value = ARM_CPU(uc, mycpu)->env.xregs[31]; break; } } } return 0; } int arm64_reg_write(struct uc_struct *uc, unsigned int *regs, void* const* vals, int count) { CPUState *mycpu = uc->cpu; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; const void *value = vals[i]; if (regid >= UC_ARM64_REG_V0 && regid <= UC_ARM64_REG_V31) { regid += UC_ARM64_REG_Q0 - UC_ARM64_REG_V0; } if (regid >= UC_ARM64_REG_X0 && regid <= UC_ARM64_REG_X28) { ARM_CPU(uc, mycpu)->env.xregs[regid - UC_ARM64_REG_X0] = *(uint64_t *)value; } else if (regid >= UC_ARM64_REG_W0 && regid <= UC_ARM64_REG_W30) { WRITE_DWORD(ARM_CPU(uc, mycpu)->env.xregs[regid - UC_ARM64_REG_W0], *(uint32_t *)value); } else if (regid >= UC_ARM64_REG_Q0 && regid <= UC_ARM64_REG_Q31) { float64 *src = (float64*) value; uint32_t reg_index = 2*(regid - UC_ARM64_REG_Q0); ARM_CPU(uc, mycpu)->env.vfp.regs[reg_index] = src[0]; ARM_CPU(uc, mycpu)->env.vfp.regs[reg_index+1] = src[1]; } else if (regid >= UC_ARM64_REG_D0 && regid <= UC_ARM64_REG_D31) { ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_D0)] = * (float64*) value; } else if (regid >= UC_ARM64_REG_S0 && regid <= UC_ARM64_REG_S31) { WRITE_DWORD(ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_S0)], *(int32_t*) value); } else if (regid >= UC_ARM64_REG_H0 && regid <= UC_ARM64_REG_H31) { WRITE_WORD(ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_H0)], *(int16_t*) value); } else if (regid >= UC_ARM64_REG_B0 && regid <= UC_ARM64_REG_B31) { WRITE_BYTE_L(ARM_CPU(uc, mycpu)->env.vfp.regs[2*(regid - UC_ARM64_REG_B0)], *(int8_t*) value); } else { switch(regid) { default: break; case UC_ARM64_REG_X29: ARM_CPU(uc, mycpu)->env.xregs[29] = *(uint64_t *)value; break; case UC_ARM64_REG_X30: ARM_CPU(uc, mycpu)->env.xregs[30] = *(uint64_t *)value; break; case UC_ARM64_REG_PC: ARM_CPU(uc, mycpu)->env.pc = *(uint64_t *)value; // force to quit execution and flush TB uc->quit_request = true; uc_emu_stop(uc); break; case UC_ARM64_REG_SP: ARM_CPU(uc, mycpu)->env.xregs[31] = *(uint64_t *)value; break; } } } return 0; } __attribute__ ((visibility ("default"))) void arm64_uc_init(struct uc_struct* uc) { register_accel_types(uc); arm_cpu_register_types(uc); aarch64_cpu_register_types(uc); machvirt_machine_init(uc); uc->reg_read = arm64_reg_read; uc->reg_write = arm64_reg_write; uc->reg_reset = arm64_reg_reset; uc->set_pc = arm64_set_pc; uc->release = arm64_release; uc_common_init(uc); }