unicorn/tests/regress/jumping.py
2016-02-18 06:29:59 -08:00

168 lines
6.3 KiB
Python
Executable File

#!/usr/bin/env python
# Mariano Graziano
from unicorn import *
from unicorn.x86_const import *
import regress
#echo -ne "\x48\x31\xc0\x48\xb8\x04\x00\x00\x00\x00\x00\x00\x00\x48\x3d\x05\x00\x00\x00\x74\x05\xe9\x0f\x00\x00\x00\x48\xba\xbe\xba\x00\x00\x00\x00\x00\x00\xe9\x0f\x00\x00\x00\x48\xba\xca\xc0\x00\x00\x00\x00\x00\x00\xe9\x00\x00\x00\x00\x90" | ndisasm - -b64
#00000000 4831C0 xor rax,rax
#00000003 48B8040000000000 mov rax,0x4
# -0000
#0000000D 483D05000000 cmp rax,0x5
#00000013 7405 jz 0x1a
#00000015 E90F000000 jmp qword 0x29
#0000001A 48BABEBA00000000 mov rdx,0xbabe
# -0000
#00000024 E90F000000 jmp qword 0x38
#00000029 48BACAC000000000 mov rdx,0xc0ca
# -0000
#00000033 E900000000 jmp qword 0x38
#00000038 90 nop
mu = 0
zf = 1 # (0:clear, 1:set)
class Init(regress.RegressTest):
def clear_zf(self):
eflags_cur = mu.reg_read(UC_X86_REG_EFLAGS)
eflags = eflags_cur & ~(1 << 6)
#eflags = 0x0
print "[clear_zf] - eflags from %x to %x" % (eflags_cur, eflags)
if eflags != eflags_cur:
print "[clear_zf] - writing new eflags..."
mu.reg_write(UC_X86_REG_EFLAGS, eflags)
def set_zf(self):
eflags_cur = mu.reg_read(UC_X86_REG_EFLAGS)
eflags = eflags_cur | (1 << 6)
#eflags = 0xFFFFFFFF
print "[set_zf] - eflags from %x to %x" % (eflags_cur, eflags)
if eflags != eflags_cur:
print "[set_zf] - writing new eflags..."
mu.reg_write(UC_X86_REG_EFLAGS, eflags)
def handle_zf(self, zf):
print "[handle_zf] - eflags " , zf
if zf == 0: self.clear_zf()
else: self.set_zf()
def multipath(self):
print "[multipath] - handling ZF (%s) - default" % zf
self.handle_zf(zf)
# callback for tracing basic blocks
def hook_block(self, uc, address, size, user_data):
print(">>> Tracing basic block at 0x%x, block size = 0x%x" %(address, size))
# callback for tracing instructions
def hook_code(self, uc, address, size, user_data):
print(">>> Tracing instruction at 0x%x, instruction size = %u" %(address, size))
rax = mu.reg_read(UC_X86_REG_RAX)
rbx = mu.reg_read(UC_X86_REG_RBX)
rcx = mu.reg_read(UC_X86_REG_RCX)
rdx = mu.reg_read(UC_X86_REG_RDX)
rsi = mu.reg_read(UC_X86_REG_RSI)
rdi = mu.reg_read(UC_X86_REG_RDI)
r8 = mu.reg_read(UC_X86_REG_R8)
r9 = mu.reg_read(UC_X86_REG_R9)
r10 = mu.reg_read(UC_X86_REG_R10)
r11 = mu.reg_read(UC_X86_REG_R11)
r12 = mu.reg_read(UC_X86_REG_R12)
r13 = mu.reg_read(UC_X86_REG_R13)
r14 = mu.reg_read(UC_X86_REG_R14)
r15 = mu.reg_read(UC_X86_REG_R15)
eflags = mu.reg_read(UC_X86_REG_EFLAGS)
print(">>> RAX = %x" %rax)
print(">>> RBX = %x" %rbx)
print(">>> RCX = %x" %rcx)
print(">>> RDX = %x" %rdx)
print(">>> RSI = %x" %rsi)
print(">>> RDI = %x" %rdi)
print(">>> R8 = %x" %r8)
print(">>> R9 = %x" %r9)
print(">>> R10 = %x" %r10)
print(">>> R11 = %x" %r11)
print(">>> R12 = %x" %r12)
print(">>> R13 = %x" %r13)
print(">>> R14 = %x" %r14)
print(">>> R15 = %x" %r15)
print(">>> ELAGS = %x" %eflags)
print "-"*11
self.multipath()
print "-"*11
# callback for tracing memory access (READ or WRITE)
def hook_mem_access(self, uc, access, address, size, value, user_data):
if access == UC_MEM_WRITE:
print(">>> Memory is being WRITE at 0x%x, data size = %u, data value = 0x%x" \
%(address, size, value))
else: # READ
print(">>> Memory is being READ at 0x%x, data size = %u" \
%(address, size))
# callback for tracing invalid memory access (READ or WRITE)
def hook_mem_invalid(self, uc, access, address, size, value, user_data):
print("[ HOOK_MEM_INVALID - Address: %s ]" % hex(address))
if access == UC_MEM_WRITE_UNMAPPED:
print(">>> Missing memory is being WRITE at 0x%x, data size = %u, data value = 0x%x" %(address, size, value))
return True
else:
print(">>> Missing memory is being READ at 0x%x, data size = %u, data value = 0x%x" %(address, size, value))
return True
def hook_mem_fetch_unmapped(self, uc, access, address, size, value, user_data):
print("[ HOOK_MEM_FETCH - Address: %s ]" % hex(address))
print("[ mem_fetch_unmapped: faulting address at %s ]" % hex(address).strip("L"))
return True
def runTest(self):
global mu
JUMP = "\x48\x31\xc0\x48\xb8\x04\x00\x00\x00\x00\x00\x00\x00\x48\x3d\x05\x00\x00\x00\x74\x05\xe9\x0f\x00\x00\x00\x48\xba\xbe\xba\x00\x00\x00\x00\x00\x00\xe9\x0f\x00\x00\x00\x48\xba\xca\xc0\x00\x00\x00\x00\x00\x00\xe9\x00\x00\x00\x00\x90"
ADDRESS = 0x1000000
print("Emulate x86_64 code")
# Initialize emulator in X86-64bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_64)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, JUMP)
# setup stack
mu.reg_write(UC_X86_REG_RSP, ADDRESS + 0x200000)
# tracing all basic blocks with customized callback
mu.hook_add(UC_HOOK_BLOCK, self.hook_block)
# tracing all instructions in range [ADDRESS, ADDRESS+0x60]
mu.hook_add(UC_HOOK_CODE, self.hook_code, None, ADDRESS, ADDRESS+0x60)
# tracing all memory READ & WRITE access
mu.hook_add(UC_HOOK_MEM_WRITE, self.hook_mem_access)
mu.hook_add(UC_HOOK_MEM_READ, self.hook_mem_access)
mu.hook_add(UC_HOOK_MEM_FETCH_UNMAPPED, self.hook_mem_fetch_unmapped)
mu.hook_add(UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED, self.hook_mem_invalid)
try:
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(JUMP))
except UcError as e:
print("ERROR: %s" % e)
rdx = mu.reg_read(UC_X86_REG_RDX)
self.assertEqual(rdx, 0xbabe, "RDX contains the wrong value. Eflags modification failed.")
if __name__ == '__main__':
regress.main()