memory: Replace all memory hooking with Special regions

This commit is contained in:
MerryMage 2018-01-27 15:16:39 +00:00
parent e7cb20fbf0
commit 738f91a57d
11 changed files with 276 additions and 444 deletions

View File

@ -163,8 +163,8 @@ add_library(core STATIC
loader/nso.h loader/nso.h
memory.cpp memory.cpp
memory.h memory.h
memory_hook.h
memory_setup.h memory_setup.h
mmio.h
perf_stats.cpp perf_stats.cpp
perf_stats.h perf_stats.h
settings.cpp settings.cpp

View File

@ -10,8 +10,8 @@
#include "core/hle/kernel/errors.h" #include "core/hle/kernel/errors.h"
#include "core/hle/kernel/vm_manager.h" #include "core/hle/kernel/vm_manager.h"
#include "core/memory.h" #include "core/memory.h"
#include "core/memory_hook.h"
#include "core/memory_setup.h" #include "core/memory_setup.h"
#include "core/mmio.h"
namespace Kernel { namespace Kernel {
@ -60,8 +60,8 @@ void VMManager::Reset() {
vma_map.emplace(initial_vma.base, initial_vma); vma_map.emplace(initial_vma.base, initial_vma);
page_table.pointers.fill(nullptr); page_table.pointers.fill(nullptr);
page_table.special_regions.clear();
page_table.attributes.fill(Memory::PageType::Unmapped); page_table.attributes.fill(Memory::PageType::Unmapped);
page_table.cached_res_count.fill(0);
UpdatePageTableForVMA(initial_vma); UpdatePageTableForVMA(initial_vma);
} }
@ -121,7 +121,7 @@ ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8* me
ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u64 size, ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u64 size,
MemoryState state, MemoryState state,
Memory::MMIORegionPointer mmio_handler) { Memory::MemoryHookPointer mmio_handler) {
// This is the appropriately sized VMA that will turn into our allocation. // This is the appropriately sized VMA that will turn into our allocation.
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size)); CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
VirtualMemoryArea& final_vma = vma_handle->second; VirtualMemoryArea& final_vma = vma_handle->second;

View File

@ -10,7 +10,7 @@
#include "common/common_types.h" #include "common/common_types.h"
#include "core/hle/result.h" #include "core/hle/result.h"
#include "core/memory.h" #include "core/memory.h"
#include "core/mmio.h" #include "core/memory_hook.h"
namespace Kernel { namespace Kernel {
@ -81,7 +81,7 @@ struct VirtualMemoryArea {
// Settings for type = MMIO // Settings for type = MMIO
/// Physical address of the register area this VMA maps to. /// Physical address of the register area this VMA maps to.
PAddr paddr = 0; PAddr paddr = 0;
Memory::MMIORegionPointer mmio_handler = nullptr; Memory::MemoryHookPointer mmio_handler = nullptr;
/// Tests if this area can be merged to the right with `next`. /// Tests if this area can be merged to the right with `next`.
bool CanBeMergedWith(const VirtualMemoryArea& next) const; bool CanBeMergedWith(const VirtualMemoryArea& next) const;
@ -160,7 +160,7 @@ public:
* @param mmio_handler The handler that will implement read and write for this MMIO region. * @param mmio_handler The handler that will implement read and write for this MMIO region.
*/ */
ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u64 size, MemoryState state, ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u64 size, MemoryState state,
Memory::MMIORegionPointer mmio_handler); Memory::MemoryHookPointer mmio_handler);
/// Unmaps a range of addresses, splitting VMAs as necessary. /// Unmaps a range of addresses, splitting VMAs as necessary.
ResultCode UnmapRange(VAddr target, u64 size); ResultCode UnmapRange(VAddr target, u64 size);

View File

@ -2,8 +2,10 @@
// Licensed under GPLv2 or any later version // Licensed under GPLv2 or any later version
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <algorithm>
#include <array> #include <array>
#include <cstring> #include <cstring>
#include <boost/optional.hpp>
#include "common/assert.h" #include "common/assert.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "common/logging/log.h" #include "common/logging/log.h"
@ -12,7 +14,6 @@
#include "core/core.h" #include "core/core.h"
#include "core/hle/kernel/memory.h" #include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h" #include "core/hle/kernel/process.h"
#include "core/hle/lock.h"
#include "core/memory.h" #include "core/memory.h"
#include "core/memory_setup.h" #include "core/memory_setup.h"
#include "video_core/renderer_base.h" #include "video_core/renderer_base.h"
@ -40,16 +41,12 @@ static void MapPages(PageTable& page_table, VAddr base, u64 size, u8* memory, Pa
LOG_DEBUG(HW_Memory, "Mapping %p onto %08X-%08X", memory, base * PAGE_SIZE, LOG_DEBUG(HW_Memory, "Mapping %p onto %08X-%08X", memory, base * PAGE_SIZE,
(base + size) * PAGE_SIZE); (base + size) * PAGE_SIZE);
RasterizerFlushVirtualRegion(base << PAGE_BITS, size * PAGE_SIZE,
FlushMode::FlushAndInvalidate);
VAddr end = base + size; VAddr end = base + size;
while (base != end) { while (base != end) {
ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at %08X", base); ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at %08X", base);
page_table.attributes[base] = type; page_table.attributes[base] = type;
page_table.pointers[base] = memory; page_table.pointers[base] = memory;
page_table.cached_res_count[base] = 0;
base += 1; base += 1;
if (memory != nullptr) if (memory != nullptr)
@ -63,157 +60,110 @@ void MapMemoryRegion(PageTable& page_table, VAddr base, u64 size, u8* target) {
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory);
} }
void MapIoRegion(PageTable& page_table, VAddr base, u64 size, MMIORegionPointer mmio_handler) { void MapIoRegion(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer mmio_handler) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
page_table.special_regions.emplace_back(SpecialRegion{base, size, mmio_handler}); auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
SpecialRegion region{SpecialRegion::Type::IODevice, mmio_handler};
page_table.special_regions.add(std::make_pair(interval, std::set<SpecialRegion>{region}));
} }
void UnmapRegion(PageTable& page_table, VAddr base, u64 size) { void UnmapRegion(PageTable& page_table, VAddr base, u64 size) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
page_table.special_regions.erase(interval);
} }
/** void AddDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook) {
* Gets a pointer to the exact memory at the virtual address (i.e. not page aligned) auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
* using a VMA from the current process SpecialRegion region{SpecialRegion::Type::DebugHook, hook};
*/ page_table.special_regions.add(std::make_pair(interval, std::set<SpecialRegion>{region}));
static u8* GetPointerFromVMA(const Kernel::Process& process, VAddr vaddr) {
u8* direct_pointer = nullptr;
auto& vm_manager = process.vm_manager;
auto it = vm_manager.FindVMA(vaddr);
ASSERT(it != vm_manager.vma_map.end());
auto& vma = it->second;
switch (vma.type) {
case Kernel::VMAType::AllocatedMemoryBlock:
direct_pointer = vma.backing_block->data() + vma.offset;
break;
case Kernel::VMAType::BackingMemory:
direct_pointer = vma.backing_memory;
break;
case Kernel::VMAType::Free:
return nullptr;
default:
UNREACHABLE();
}
return direct_pointer + (vaddr - vma.base);
} }
/** void RemoveDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook) {
* Gets a pointer to the exact memory at the virtual address (i.e. not page aligned) auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
* using a VMA from the current process. SpecialRegion region{SpecialRegion::Type::DebugHook, hook};
*/ page_table.special_regions.subtract(std::make_pair(interval, std::set<SpecialRegion>{region}));
static u8* GetPointerFromVMA(VAddr vaddr) {
return GetPointerFromVMA(*Kernel::g_current_process, vaddr);
} }
/** /**
* This function should only be called for virtual addreses with attribute `PageType::Special`. * This function should only be called for virtual addreses with attribute `PageType::Special`.
*/ */
static MMIORegionPointer GetMMIOHandler(const PageTable& page_table, VAddr vaddr) { static std::set<MemoryHookPointer> GetSpecialHandlers(const PageTable& page_table, VAddr vaddr,
for (const auto& region : page_table.special_regions) { u64 size) {
if (vaddr >= region.base && vaddr < (region.base + region.size)) { std::set<MemoryHookPointer> result;
return region.handler; auto interval = boost::icl::discrete_interval<VAddr>::closed(vaddr, vaddr + size - 1);
auto interval_list = page_table.special_regions.equal_range(interval);
for (auto it = interval_list.first; it != interval_list.second; ++it) {
for (const auto& region : it->second) {
result.insert(region.handler);
} }
} }
ASSERT_MSG(false, "Mapped IO page without a handler @ %08X", vaddr); return result;
return nullptr; // Should never happen
} }
static MMIORegionPointer GetMMIOHandler(VAddr vaddr) { static std::set<MemoryHookPointer> GetSpecialHandlers(VAddr vaddr, u64 size) {
const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table; const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
return GetMMIOHandler(page_table, vaddr); return GetSpecialHandlers(page_table, vaddr, size);
} }
template <typename T> template <typename T>
T ReadMMIO(MMIORegionPointer mmio_handler, VAddr addr); boost::optional<T> ReadSpecial(VAddr addr);
template <typename T> template <typename T>
T Read(const VAddr vaddr) { T Read(const VAddr vaddr) {
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; const PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
if (page_pointer) { switch (type) {
// NOTE: Avoid adding any extra logic to this fast-path block case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Read%lu @ 0x%016llX", sizeof(T) * 8, vaddr);
return 0;
case PageType::Special: {
if (auto result = ReadSpecial<T>(vaddr))
return *result;
[[fallthrough]];
}
case PageType::Memory: {
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
ASSERT_MSG(page_pointer, "Mapped memory page without a pointer @ %08X", vaddr);
T value; T value;
std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T)); std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T));
return value; return value;
} }
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Read%lu @ 0x%llx", sizeof(T) * 8, vaddr);
return 0;
case PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
break;
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Flush);
T value;
std::memcpy(&value, GetPointerFromVMA(vaddr), sizeof(T));
return value;
}
case PageType::Special:
return ReadMMIO<T>(GetMMIOHandler(vaddr), vaddr);
case PageType::RasterizerCachedSpecial: {
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Flush);
return ReadMMIO<T>(GetMMIOHandler(vaddr), vaddr);
}
default:
UNREACHABLE();
} }
UNREACHABLE();
return 0;
} }
template <typename T> template <typename T>
void WriteMMIO(MMIORegionPointer mmio_handler, VAddr addr, const T data); bool WriteSpecial(VAddr addr, const T data);
template <typename T> template <typename T>
void Write(const VAddr vaddr, const T data) { void Write(const VAddr vaddr, const T data) {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; const PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T));
return;
}
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) { switch (type) {
case PageType::Unmapped: case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data,
vaddr); vaddr);
return; return;
case PageType::Memory: case PageType::Special: {
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr); if (WriteSpecial<T>(vaddr, data))
break; return;
case PageType::RasterizerCachedMemory: { [[fallthrough]];
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::FlushAndInvalidate);
std::memcpy(GetPointerFromVMA(vaddr), &data, sizeof(T));
break;
} }
case PageType::Special: case PageType::Memory: {
WriteMMIO<T>(GetMMIOHandler(vaddr), vaddr, data); u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
break; ASSERT_MSG(page_pointer, "Mapped memory page without a pointer @ %08X", vaddr);
case PageType::RasterizerCachedSpecial: { std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T));
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::FlushAndInvalidate); return;
WriteMMIO<T>(GetMMIOHandler(vaddr), vaddr, data);
break;
} }
default:
UNREACHABLE();
} }
UNREACHABLE();
} }
bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) { bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) {
@ -222,21 +172,20 @@ bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) {
if ((vaddr >> PAGE_BITS) >= PAGE_TABLE_NUM_ENTRIES) if ((vaddr >> PAGE_BITS) >= PAGE_TABLE_NUM_ENTRIES)
return false; return false;
const u8* page_pointer = page_table.pointers[vaddr >> PAGE_BITS]; const PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
if (page_pointer) switch (type) {
return true; case PageType::Unmapped:
if (page_table.attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory)
return true;
if (page_table.attributes[vaddr >> PAGE_BITS] != PageType::Special)
return false; return false;
case PageType::Memory:
MMIORegionPointer mmio_region = GetMMIOHandler(page_table, vaddr); return true;
if (mmio_region) { case PageType::Special: {
return mmio_region->IsValidAddress(vaddr); for (auto handler : GetSpecialHandlers(page_table, vaddr, 1))
if (auto result = handler->IsValidAddress(vaddr))
return *result;
return current_page_table->pointers[vaddr >> PAGE_BITS] != nullptr;
} }
}
UNREACHABLE();
return false; return false;
} }
@ -254,10 +203,6 @@ u8* GetPointer(const VAddr vaddr) {
return page_pointer + (vaddr & PAGE_MASK); return page_pointer + (vaddr & PAGE_MASK);
} }
if (current_page_table->attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) {
return GetPointerFromVMA(vaddr);
}
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr); LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr);
return nullptr; return nullptr;
} }
@ -335,97 +280,6 @@ u8* GetPhysicalPointer(PAddr address) {
return target_pointer; return target_pointer;
} }
void RasterizerMarkRegionCached(PAddr start, u64 size, int count_delta) {
if (start == 0) {
return;
}
u64 num_pages = ((start + size - 1) >> PAGE_BITS) - (start >> PAGE_BITS) + 1;
PAddr paddr = start;
for (unsigned i = 0; i < num_pages; ++i, paddr += PAGE_SIZE) {
boost::optional<VAddr> maybe_vaddr = PhysicalToVirtualAddress(paddr);
// While the physical <-> virtual mapping is 1:1 for the regions supported by the cache,
// some games (like Pokemon Super Mystery Dungeon) will try to use textures that go beyond
// the end address of VRAM, causing the Virtual->Physical translation to fail when flushing
// parts of the texture.
if (!maybe_vaddr) {
LOG_ERROR(HW_Memory,
"Trying to flush a cached region to an invalid physical address %08X", paddr);
continue;
}
VAddr vaddr = *maybe_vaddr;
u8& res_count = current_page_table->cached_res_count[vaddr >> PAGE_BITS];
ASSERT_MSG(count_delta <= UINT8_MAX - res_count,
"Rasterizer resource cache counter overflow!");
ASSERT_MSG(count_delta >= -res_count, "Rasterizer resource cache counter underflow!");
// Switch page type to cached if now cached
if (res_count == 0) {
PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (page_type) {
case PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
break;
case PageType::Memory:
page_type = PageType::RasterizerCachedMemory;
current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr;
break;
case PageType::Special:
page_type = PageType::RasterizerCachedSpecial;
break;
default:
UNREACHABLE();
}
}
res_count += count_delta;
// Switch page type to uncached if now uncached
if (res_count == 0) {
PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (page_type) {
case PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
break;
case PageType::RasterizerCachedMemory: {
u8* pointer = GetPointerFromVMA(vaddr & ~PAGE_MASK);
if (pointer == nullptr) {
// It's possible that this function has called been while updating the pagetable
// after unmapping a VMA. In that case the underlying VMA will no longer exist,
// and we should just leave the pagetable entry blank.
page_type = PageType::Unmapped;
} else {
page_type = PageType::Memory;
current_page_table->pointers[vaddr >> PAGE_BITS] = pointer;
}
break;
}
case PageType::RasterizerCachedSpecial:
page_type = PageType::Special;
break;
default:
UNREACHABLE();
}
}
}
}
void RasterizerFlushRegion(PAddr start, u64 size) {}
void RasterizerFlushAndInvalidateRegion(PAddr start, u64 size) {
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
// null here
}
void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode) {
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
// null here
}
u8 Read8(const VAddr addr) { u8 Read8(const VAddr addr) {
return Read<u8>(addr); return Read<u8>(addr);
} }
@ -442,6 +296,17 @@ u64 Read64(const VAddr addr) {
return Read<u64_le>(addr); return Read<u64_le>(addr);
} }
static bool ReadSpecialBlock(const Kernel::Process& process, const VAddr src_addr,
void* dest_buffer, const size_t size) {
auto& page_table = process.vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, src_addr, size)) {
if (handler->ReadBlock(src_addr, dest_buffer, size)) {
return true;
}
}
return false;
}
void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer, void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer,
const size_t size) { const size_t size) {
auto& page_table = process.vm_manager.page_table; auto& page_table = process.vm_manager.page_table;
@ -455,11 +320,15 @@ void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) { switch (page_table.attributes[page_index]) {
case PageType::Unmapped: { case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped ReadBlock @ 0x%08X (start address = 0xllx, size = %zu)", LOG_ERROR(HW_Memory, "unmapped ReadBlock @ 0x%08X (start address = 0xllx, size = %zu)",
current_vaddr, src_addr, size); current_vaddr, src_addr, size);
std::memset(dest_buffer, 0, copy_amount); std::memset(dest_buffer, 0, copy_amount);
break; break;
case PageType::Special: {
if (ReadSpecialBlock(process, current_vaddr, dest_buffer, copy_amount))
break;
[[fallthrough]];
} }
case PageType::Memory: { case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]); DEBUG_ASSERT(page_table.pointers[page_index]);
@ -468,26 +337,6 @@ void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_
std::memcpy(dest_buffer, src_ptr, copy_amount); std::memcpy(dest_buffer, src_ptr, copy_amount);
break; break;
} }
case PageType::Special: {
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
handler->ReadBlock(current_vaddr, dest_buffer, copy_amount);
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Flush);
std::memcpy(dest_buffer, GetPointerFromVMA(process, current_vaddr), copy_amount);
break;
}
case PageType::RasterizerCachedSpecial: {
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Flush);
handler->ReadBlock(current_vaddr, dest_buffer, copy_amount);
break;
}
default: default:
UNREACHABLE(); UNREACHABLE();
} }
@ -519,6 +368,17 @@ void Write64(const VAddr addr, const u64 data) {
Write<u64_le>(addr, data); Write<u64_le>(addr, data);
} }
static bool WriteSpecialBlock(const Kernel::Process& process, const VAddr dest_addr,
const void* src_buffer, const size_t size) {
auto& page_table = process.vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, dest_addr, size)) {
if (handler->WriteBlock(dest_addr, src_buffer, size)) {
return true;
}
}
return false;
}
void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer, void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer,
const size_t size) { const size_t size) {
auto& page_table = process.vm_manager.page_table; auto& page_table = process.vm_manager.page_table;
@ -531,12 +391,15 @@ void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const voi
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) { switch (page_table.attributes[page_index]) {
case PageType::Unmapped: { case PageType::Unmapped:
LOG_ERROR(HW_Memory, LOG_ERROR(HW_Memory,
"unmapped WriteBlock @ 0x%08X (start address = 0x%08X, size = %zu)", "unmapped WriteBlock @ 0x%08X (start address = 0x%08X, size = %zu)",
current_vaddr, dest_addr, size); current_vaddr, dest_addr, size);
break; break;
} case PageType::Special:
if (WriteSpecialBlock(process, current_vaddr, src_buffer, copy_amount))
break;
[[fallthrough]];
case PageType::Memory: { case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]); DEBUG_ASSERT(page_table.pointers[page_index]);
@ -544,26 +407,6 @@ void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const voi
std::memcpy(dest_ptr, src_buffer, copy_amount); std::memcpy(dest_ptr, src_buffer, copy_amount);
break; break;
} }
case PageType::Special: {
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
handler->WriteBlock(current_vaddr, src_buffer, copy_amount);
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::FlushAndInvalidate);
std::memcpy(GetPointerFromVMA(process, current_vaddr), src_buffer, copy_amount);
break;
}
case PageType::RasterizerCachedSpecial: {
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::FlushAndInvalidate);
handler->WriteBlock(current_vaddr, src_buffer, copy_amount);
break;
}
default: default:
UNREACHABLE(); UNREACHABLE();
} }
@ -580,6 +423,8 @@ void WriteBlock(const VAddr dest_addr, const void* src_buffer, const size_t size
} }
void ZeroBlock(const VAddr dest_addr, const size_t size) { void ZeroBlock(const VAddr dest_addr, const size_t size) {
const auto& process = *Kernel::g_current_process;
size_t remaining_size = size; size_t remaining_size = size;
size_t page_index = dest_addr >> PAGE_BITS; size_t page_index = dest_addr >> PAGE_BITS;
size_t page_offset = dest_addr & PAGE_MASK; size_t page_offset = dest_addr & PAGE_MASK;
@ -591,11 +436,14 @@ void ZeroBlock(const VAddr dest_addr, const size_t size) {
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (current_page_table->attributes[page_index]) { switch (current_page_table->attributes[page_index]) {
case PageType::Unmapped: { case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped ZeroBlock @ 0x%08X (start address = 0x%08X, size = %zu)", LOG_ERROR(HW_Memory, "unmapped ZeroBlock @ 0x%08X (start address = 0x%08X, size = %zu)",
current_vaddr, dest_addr, size); current_vaddr, dest_addr, size);
break; break;
} case PageType::Special:
if (WriteSpecialBlock(process, current_vaddr, zeros.data(), copy_amount))
break;
[[fallthrough]];
case PageType::Memory: { case PageType::Memory: {
DEBUG_ASSERT(current_page_table->pointers[page_index]); DEBUG_ASSERT(current_page_table->pointers[page_index]);
@ -603,25 +451,6 @@ void ZeroBlock(const VAddr dest_addr, const size_t size) {
std::memset(dest_ptr, 0, copy_amount); std::memset(dest_ptr, 0, copy_amount);
break; break;
} }
case PageType::Special: {
DEBUG_ASSERT(GetMMIOHandler(current_vaddr));
GetMMIOHandler(current_vaddr)->WriteBlock(current_vaddr, zeros.data(), copy_amount);
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::FlushAndInvalidate);
std::memset(GetPointerFromVMA(current_vaddr), 0, copy_amount);
break;
}
case PageType::RasterizerCachedSpecial: {
DEBUG_ASSERT(GetMMIOHandler(current_vaddr));
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::FlushAndInvalidate);
GetMMIOHandler(current_vaddr)->WriteBlock(current_vaddr, zeros.data(), copy_amount);
break;
}
default: default:
UNREACHABLE(); UNREACHABLE();
} }
@ -633,6 +462,8 @@ void ZeroBlock(const VAddr dest_addr, const size_t size) {
} }
void CopyBlock(VAddr dest_addr, VAddr src_addr, const size_t size) { void CopyBlock(VAddr dest_addr, VAddr src_addr, const size_t size) {
const auto& process = *Kernel::g_current_process;
size_t remaining_size = size; size_t remaining_size = size;
size_t page_index = src_addr >> PAGE_BITS; size_t page_index = src_addr >> PAGE_BITS;
size_t page_offset = src_addr & PAGE_MASK; size_t page_offset = src_addr & PAGE_MASK;
@ -642,11 +473,18 @@ void CopyBlock(VAddr dest_addr, VAddr src_addr, const size_t size) {
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (current_page_table->attributes[page_index]) { switch (current_page_table->attributes[page_index]) {
case PageType::Unmapped: { case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped CopyBlock @ 0x%08X (start address = 0x%08X, size = %zu)", LOG_ERROR(HW_Memory, "unmapped CopyBlock @ 0x%08X (start address = 0x%08X, size = %zu)",
current_vaddr, src_addr, size); current_vaddr, src_addr, size);
ZeroBlock(dest_addr, copy_amount); ZeroBlock(dest_addr, copy_amount);
break; break;
case PageType::Special: {
std::vector<u8> buffer(copy_amount);
if (ReadSpecialBlock(process, current_vaddr, buffer.data(), buffer.size())) {
WriteBlock(dest_addr, buffer.data(), buffer.size());
break;
}
[[fallthrough]];
} }
case PageType::Memory: { case PageType::Memory: {
DEBUG_ASSERT(current_page_table->pointers[page_index]); DEBUG_ASSERT(current_page_table->pointers[page_index]);
@ -654,30 +492,6 @@ void CopyBlock(VAddr dest_addr, VAddr src_addr, const size_t size) {
WriteBlock(dest_addr, src_ptr, copy_amount); WriteBlock(dest_addr, src_ptr, copy_amount);
break; break;
} }
case PageType::Special: {
DEBUG_ASSERT(GetMMIOHandler(current_vaddr));
std::vector<u8> buffer(copy_amount);
GetMMIOHandler(current_vaddr)->ReadBlock(current_vaddr, buffer.data(), buffer.size());
WriteBlock(dest_addr, buffer.data(), buffer.size());
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Flush);
WriteBlock(dest_addr, GetPointerFromVMA(current_vaddr), copy_amount);
break;
}
case PageType::RasterizerCachedSpecial: {
DEBUG_ASSERT(GetMMIOHandler(current_vaddr));
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Flush);
std::vector<u8> buffer(copy_amount);
GetMMIOHandler(current_vaddr)->ReadBlock(current_vaddr, buffer.data(), buffer.size());
WriteBlock(dest_addr, buffer.data(), buffer.size());
break;
}
default: default:
UNREACHABLE(); UNREACHABLE();
} }
@ -691,43 +505,75 @@ void CopyBlock(VAddr dest_addr, VAddr src_addr, const size_t size) {
} }
template <> template <>
u8 ReadMMIO<u8>(MMIORegionPointer mmio_handler, VAddr addr) { boost::optional<u8> ReadSpecial<u8>(VAddr addr) {
return mmio_handler->Read8(addr); const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u8)))
if (auto result = handler->Read8(addr))
return *result;
return {};
} }
template <> template <>
u16 ReadMMIO<u16>(MMIORegionPointer mmio_handler, VAddr addr) { boost::optional<u16> ReadSpecial<u16>(VAddr addr) {
return mmio_handler->Read16(addr); const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u16)))
if (auto result = handler->Read16(addr))
return *result;
return {};
} }
template <> template <>
u32 ReadMMIO<u32>(MMIORegionPointer mmio_handler, VAddr addr) { boost::optional<u32> ReadSpecial<u32>(VAddr addr) {
return mmio_handler->Read32(addr); const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u32)))
if (auto result = handler->Read32(addr))
return *result;
return {};
} }
template <> template <>
u64 ReadMMIO<u64>(MMIORegionPointer mmio_handler, VAddr addr) { boost::optional<u64> ReadSpecial<u64>(VAddr addr) {
return mmio_handler->Read64(addr); const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u64)))
if (auto result = handler->Read64(addr))
return *result;
return {};
} }
template <> template <>
void WriteMMIO<u8>(MMIORegionPointer mmio_handler, VAddr addr, const u8 data) { bool WriteSpecial<u8>(VAddr addr, const u8 data) {
mmio_handler->Write8(addr, data); const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u8)))
if (handler->Write8(addr, data))
return true;
return false;
} }
template <> template <>
void WriteMMIO<u16>(MMIORegionPointer mmio_handler, VAddr addr, const u16 data) { bool WriteSpecial<u16>(VAddr addr, const u16 data) {
mmio_handler->Write16(addr, data); const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u16)))
if (handler->Write16(addr, data))
return true;
return false;
} }
template <> template <>
void WriteMMIO<u32>(MMIORegionPointer mmio_handler, VAddr addr, const u32 data) { bool WriteSpecial<u32>(VAddr addr, const u32 data) {
mmio_handler->Write32(addr, data); const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u32)))
if (handler->Write32(addr, data))
return true;
return false;
} }
template <> template <>
void WriteMMIO<u64>(MMIORegionPointer mmio_handler, VAddr addr, const u64 data) { bool WriteSpecial<u64>(VAddr addr, const u64 data) {
mmio_handler->Write64(addr, data); const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u64)))
if (handler->Write64(addr, data))
return true;
return false;
} }
boost::optional<PAddr> TryVirtualToPhysicalAddress(const VAddr addr) { boost::optional<PAddr> TryVirtualToPhysicalAddress(const VAddr addr) {

View File

@ -8,10 +8,12 @@
#include <cstddef> #include <cstddef>
#include <map> #include <map>
#include <string> #include <string>
#include <tuple>
#include <vector> #include <vector>
#include <boost/icl/interval_map.hpp>
#include <boost/optional.hpp> #include <boost/optional.hpp>
#include "common/common_types.h" #include "common/common_types.h"
#include "core/mmio.h" #include "core/memory_hook.h"
namespace Kernel { namespace Kernel {
class Process; class Process;
@ -28,32 +30,35 @@ const u64 PAGE_SIZE = 1 << PAGE_BITS;
const u64 PAGE_MASK = PAGE_SIZE - 1; const u64 PAGE_MASK = PAGE_SIZE - 1;
const size_t PAGE_TABLE_NUM_ENTRIES = 1ULL << (36 - PAGE_BITS); const size_t PAGE_TABLE_NUM_ENTRIES = 1ULL << (36 - PAGE_BITS);
enum class PageType { enum class PageType : u8 {
/// Page is unmapped and should cause an access error. /// Page is unmapped and should cause an access error.
Unmapped, Unmapped,
/// Page is mapped to regular memory. This is the only type you can get pointers to. /// Page is mapped to regular memory. This is the only type you can get pointers to.
Memory, Memory,
/// Page is mapped to regular memory, but also needs to check for rasterizer cache flushing and /// Page is mapped to a memory hook, which intercepts read and write requests.
/// invalidation
RasterizerCachedMemory,
/// Page is mapped to a I/O region. Writing and reading to this page is handled by functions.
Special, Special,
/// Page is mapped to a I/O region, but also needs to check for rasterizer cache flushing and
/// invalidation
RasterizerCachedSpecial,
}; };
struct SpecialRegion { struct SpecialRegion {
VAddr base; enum class Type {
u64 size; DebugHook,
MMIORegionPointer handler; IODevice,
} type;
MemoryHookPointer handler;
bool operator<(const SpecialRegion& other) const {
return std::tie(type, handler) < std::tie(other.type, other.handler);
}
bool operator==(const SpecialRegion& other) const {
return std::tie(type, handler) == std::tie(other.type, other.handler);
}
}; };
/** /**
* A (reasonably) fast way of allowing switchable and remappable process address spaces. It loosely * A (reasonably) fast way of allowing switchable and remappable process address spaces. It loosely
* mimics the way a real CPU page table works, but instead is optimized for minimal decoding and * mimics the way a real CPU page table works.
* fetching requirements when accessing. In the usual case of an access to regular memory, it only
* requires an indexed fetch and a check for NULL.
*/ */
struct PageTable { struct PageTable {
/** /**
@ -66,19 +71,13 @@ struct PageTable {
* Contains MMIO handlers that back memory regions whose entries in the `attribute` array is of * Contains MMIO handlers that back memory regions whose entries in the `attribute` array is of
* type `Special`. * type `Special`.
*/ */
std::vector<SpecialRegion> special_regions; boost::icl::interval_map<VAddr, std::set<SpecialRegion>> special_regions;
/** /**
* Array of fine grained page attributes. If it is set to any value other than `Memory`, then * Array of fine grained page attributes. If it is set to any value other than `Memory`, then
* the corresponding entry in `pointers` MUST be set to null. * the corresponding entry in `pointers` MUST be set to null.
*/ */
std::array<PageType, PAGE_TABLE_NUM_ENTRIES> attributes; std::array<PageType, PAGE_TABLE_NUM_ENTRIES> attributes;
/**
* Indicates the number of externally cached resources touching a page that should be
* flushed before the memory is accessed
*/
std::array<u8, PAGE_TABLE_NUM_ENTRIES> cached_res_count;
}; };
/// Physical memory regions as seen from the ARM11 /// Physical memory regions as seen from the ARM11
@ -243,33 +242,4 @@ boost::optional<VAddr> PhysicalToVirtualAddress(PAddr addr);
*/ */
u8* GetPhysicalPointer(PAddr address); u8* GetPhysicalPointer(PAddr address);
/**
* Adds the supplied value to the rasterizer resource cache counter of each
* page touching the region.
*/
void RasterizerMarkRegionCached(PAddr start, u64 size, int count_delta);
/**
* Flushes any externally cached rasterizer resources touching the given region.
*/
void RasterizerFlushRegion(PAddr start, u64 size);
/**
* Flushes and invalidates any externally cached rasterizer resources touching the given region.
*/
void RasterizerFlushAndInvalidateRegion(PAddr start, u64 size);
enum class FlushMode {
/// Write back modified surfaces to RAM
Flush,
/// Write back modified surfaces to RAM, and also remove them from the cache
FlushAndInvalidate,
};
/**
* Flushes and invalidates any externally cached rasterizer resources touching the given virtual
* address region.
*/
void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode);
} // namespace Memory } // namespace Memory

46
src/core/memory_hook.h Normal file
View File

@ -0,0 +1,46 @@
// Copyright 2016 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <boost/optional.hpp>
#include "common/common_types.h"
namespace Memory {
/**
* Memory hooks have two purposes:
* 1. To allow reads and writes to a region of memory to be intercepted. This is used to implement
* texture forwarding and memory breakpoints for debugging.
* 2. To allow for the implementation of MMIO devices.
*
* A hook may be mapped to multiple regions of memory.
*
* If a boost::none or false is returned from a function, the read/write request is passed through
* to the underlying memory region.
*/
class MemoryHook {
public:
virtual ~MemoryHook() = default;
virtual boost::optional<bool> IsValidAddress(VAddr addr) = 0;
virtual boost::optional<u8> Read8(VAddr addr) = 0;
virtual boost::optional<u16> Read16(VAddr addr) = 0;
virtual boost::optional<u32> Read32(VAddr addr) = 0;
virtual boost::optional<u64> Read64(VAddr addr) = 0;
virtual bool ReadBlock(VAddr src_addr, void* dest_buffer, size_t size) = 0;
virtual bool Write8(VAddr addr, u8 data) = 0;
virtual bool Write16(VAddr addr, u16 data) = 0;
virtual bool Write32(VAddr addr, u32 data) = 0;
virtual bool Write64(VAddr addr, u64 data) = 0;
virtual bool WriteBlock(VAddr dest_addr, const void* src_buffer, size_t size) = 0;
};
using MemoryHookPointer = std::shared_ptr<MemoryHook>;
} // namespace Memory

View File

@ -5,7 +5,7 @@
#pragma once #pragma once
#include "common/common_types.h" #include "common/common_types.h"
#include "core/mmio.h" #include "core/memory_hook.h"
namespace Memory { namespace Memory {
@ -26,7 +26,11 @@ void MapMemoryRegion(PageTable& page_table, VAddr base, u64 size, u8* target);
* @param size The amount of bytes to map. Must be page-aligned. * @param size The amount of bytes to map. Must be page-aligned.
* @param mmio_handler The handler that backs the mapping. * @param mmio_handler The handler that backs the mapping.
*/ */
void MapIoRegion(PageTable& page_table, VAddr base, u64 size, MMIORegionPointer mmio_handler); void MapIoRegion(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer mmio_handler);
void UnmapRegion(PageTable& page_table, VAddr base, u64 size); void UnmapRegion(PageTable& page_table, VAddr base, u64 size);
void AddDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook);
void RemoveDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook);
} // namespace Memory } // namespace Memory

View File

@ -1,38 +0,0 @@
// Copyright 2016 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include "common/common_types.h"
namespace Memory {
/**
* Represents a device with memory mapped IO.
* A device may be mapped to multiple regions of memory.
*/
class MMIORegion {
public:
virtual ~MMIORegion() = default;
virtual bool IsValidAddress(VAddr addr) = 0;
virtual u8 Read8(VAddr addr) = 0;
virtual u16 Read16(VAddr addr) = 0;
virtual u32 Read32(VAddr addr) = 0;
virtual u64 Read64(VAddr addr) = 0;
virtual bool ReadBlock(VAddr src_addr, void* dest_buffer, size_t size) = 0;
virtual void Write8(VAddr addr, u8 data) = 0;
virtual void Write16(VAddr addr, u16 data) = 0;
virtual void Write32(VAddr addr, u32 data) = 0;
virtual void Write64(VAddr addr, u64 data) = 0;
virtual bool WriteBlock(VAddr dest_addr, const void* src_buffer, size_t size) = 0;
};
using MMIORegionPointer = std::shared_ptr<MMIORegion>;
}; // namespace Memory

View File

@ -19,8 +19,8 @@ TestEnvironment::TestEnvironment(bool mutable_memory_)
page_table = &Kernel::g_current_process->vm_manager.page_table; page_table = &Kernel::g_current_process->vm_manager.page_table;
page_table->pointers.fill(nullptr); page_table->pointers.fill(nullptr);
page_table->special_regions.clear();
page_table->attributes.fill(Memory::PageType::Unmapped); page_table->attributes.fill(Memory::PageType::Unmapped);
page_table->cached_res_count.fill(0);
Memory::MapIoRegion(*page_table, 0x00000000, 0x80000000, test_memory); Memory::MapIoRegion(*page_table, 0x00000000, 0x80000000, test_memory);
Memory::MapIoRegion(*page_table, 0x80000000, 0x80000000, test_memory); Memory::MapIoRegion(*page_table, 0x80000000, 0x80000000, test_memory);
@ -62,11 +62,11 @@ void TestEnvironment::ClearWriteRecords() {
TestEnvironment::TestMemory::~TestMemory() {} TestEnvironment::TestMemory::~TestMemory() {}
bool TestEnvironment::TestMemory::IsValidAddress(VAddr addr) { boost::optional<bool> TestEnvironment::TestMemory::IsValidAddress(VAddr addr) {
return true; return true;
} }
u8 TestEnvironment::TestMemory::Read8(VAddr addr) { boost::optional<u8> TestEnvironment::TestMemory::Read8(VAddr addr) {
auto iter = data.find(addr); auto iter = data.find(addr);
if (iter == data.end()) { if (iter == data.end()) {
return addr; // Some arbitrary data return addr; // Some arbitrary data
@ -74,16 +74,16 @@ u8 TestEnvironment::TestMemory::Read8(VAddr addr) {
return iter->second; return iter->second;
} }
u16 TestEnvironment::TestMemory::Read16(VAddr addr) { boost::optional<u16> TestEnvironment::TestMemory::Read16(VAddr addr) {
return Read8(addr) | static_cast<u16>(Read8(addr + 1)) << 8; return *Read8(addr) | static_cast<u16>(*Read8(addr + 1)) << 8;
} }
u32 TestEnvironment::TestMemory::Read32(VAddr addr) { boost::optional<u32> TestEnvironment::TestMemory::Read32(VAddr addr) {
return Read16(addr) | static_cast<u32>(Read16(addr + 2)) << 16; return *Read16(addr) | static_cast<u32>(*Read16(addr + 2)) << 16;
} }
u64 TestEnvironment::TestMemory::Read64(VAddr addr) { boost::optional<u64> TestEnvironment::TestMemory::Read64(VAddr addr) {
return Read32(addr) | static_cast<u64>(Read32(addr + 4)) << 32; return *Read32(addr) | static_cast<u64>(*Read32(addr + 4)) << 32;
} }
bool TestEnvironment::TestMemory::ReadBlock(VAddr src_addr, void* dest_buffer, size_t size) { bool TestEnvironment::TestMemory::ReadBlock(VAddr src_addr, void* dest_buffer, size_t size) {
@ -91,34 +91,38 @@ bool TestEnvironment::TestMemory::ReadBlock(VAddr src_addr, void* dest_buffer, s
u8* data = static_cast<u8*>(dest_buffer); u8* data = static_cast<u8*>(dest_buffer);
for (size_t i = 0; i < size; i++, addr++, data++) { for (size_t i = 0; i < size; i++, addr++, data++) {
*data = Read8(addr); *data = *Read8(addr);
} }
return true; return true;
} }
void TestEnvironment::TestMemory::Write8(VAddr addr, u8 data) { bool TestEnvironment::TestMemory::Write8(VAddr addr, u8 data) {
env->write_records.emplace_back(8, addr, data); env->write_records.emplace_back(8, addr, data);
if (env->mutable_memory) if (env->mutable_memory)
env->SetMemory8(addr, data); env->SetMemory8(addr, data);
return true;
} }
void TestEnvironment::TestMemory::Write16(VAddr addr, u16 data) { bool TestEnvironment::TestMemory::Write16(VAddr addr, u16 data) {
env->write_records.emplace_back(16, addr, data); env->write_records.emplace_back(16, addr, data);
if (env->mutable_memory) if (env->mutable_memory)
env->SetMemory16(addr, data); env->SetMemory16(addr, data);
return true;
} }
void TestEnvironment::TestMemory::Write32(VAddr addr, u32 data) { bool TestEnvironment::TestMemory::Write32(VAddr addr, u32 data) {
env->write_records.emplace_back(32, addr, data); env->write_records.emplace_back(32, addr, data);
if (env->mutable_memory) if (env->mutable_memory)
env->SetMemory32(addr, data); env->SetMemory32(addr, data);
return true;
} }
void TestEnvironment::TestMemory::Write64(VAddr addr, u64 data) { bool TestEnvironment::TestMemory::Write64(VAddr addr, u64 data) {
env->write_records.emplace_back(64, addr, data); env->write_records.emplace_back(64, addr, data);
if (env->mutable_memory) if (env->mutable_memory)
env->SetMemory64(addr, data); env->SetMemory64(addr, data);
return true;
} }
bool TestEnvironment::TestMemory::WriteBlock(VAddr dest_addr, const void* src_buffer, size_t size) { bool TestEnvironment::TestMemory::WriteBlock(VAddr dest_addr, const void* src_buffer, size_t size) {

View File

@ -7,7 +7,7 @@
#include <vector> #include <vector>
#include "common/common_types.h" #include "common/common_types.h"
#include "core/mmio.h" #include "core/memory_hook.h"
namespace ArmTests { namespace ArmTests {
@ -51,25 +51,25 @@ public:
private: private:
friend struct TestMemory; friend struct TestMemory;
struct TestMemory final : Memory::MMIORegion { struct TestMemory final : Memory::MemoryHook {
explicit TestMemory(TestEnvironment* env_) : env(env_) {} explicit TestMemory(TestEnvironment* env_) : env(env_) {}
TestEnvironment* env; TestEnvironment* env;
~TestMemory() override; ~TestMemory() override;
bool IsValidAddress(VAddr addr) override; boost::optional<bool> IsValidAddress(VAddr addr) override;
u8 Read8(VAddr addr) override; boost::optional<u8> Read8(VAddr addr) override;
u16 Read16(VAddr addr) override; boost::optional<u16> Read16(VAddr addr) override;
u32 Read32(VAddr addr) override; boost::optional<u32> Read32(VAddr addr) override;
u64 Read64(VAddr addr) override; boost::optional<u64> Read64(VAddr addr) override;
bool ReadBlock(VAddr src_addr, void* dest_buffer, size_t size) override; bool ReadBlock(VAddr src_addr, void* dest_buffer, size_t size) override;
void Write8(VAddr addr, u8 data) override; bool Write8(VAddr addr, u8 data) override;
void Write16(VAddr addr, u16 data) override; bool Write16(VAddr addr, u16 data) override;
void Write32(VAddr addr, u32 data) override; bool Write32(VAddr addr, u32 data) override;
void Write64(VAddr addr, u64 data) override; bool Write64(VAddr addr, u64 data) override;
bool WriteBlock(VAddr dest_addr, const void* src_buffer, size_t size) override; bool WriteBlock(VAddr dest_addr, const void* src_buffer, size_t size) override;

View File

@ -266,7 +266,7 @@ void RendererOpenGL::LoadFBToScreenInfo(const FramebufferInfo& framebuffer_info,
screen_info.display_texture = screen_info.texture.resource.handle; screen_info.display_texture = screen_info.texture.resource.handle;
screen_info.display_texcoords = MathUtil::Rectangle<float>(0.f, 0.f, 1.f, 1.f); screen_info.display_texcoords = MathUtil::Rectangle<float>(0.f, 0.f, 1.f, 1.f);
Memory::RasterizerFlushRegion(framebuffer_info.address, size_in_bytes); // Memory::RasterizerFlushRegion(framebuffer_info.address, size_in_bytes);
state.texture_units[0].texture_2d = screen_info.texture.resource.handle; state.texture_units[0].texture_2d = screen_info.texture.resource.handle;
state.Apply(); state.Apply();