mirror of
https://github.com/yuzu-emu/yuzu-android.git
synced 2024-11-30 07:34:21 +01:00
99ceb03a1c
This formats all copyright comments according to SPDX formatting guidelines. Additionally, this resolves the remaining GPLv2 only licensed files by relicensing them to GPLv2.0-or-later.
250 lines
7.7 KiB
C++
250 lines
7.7 KiB
C++
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#pragma once
|
|
|
|
#include <array>
|
|
|
|
#include "common/alignment.h"
|
|
#include "common/common_types.h"
|
|
|
|
namespace Common {
|
|
|
|
// Implementation of TinyMT (mersenne twister RNG).
|
|
// Like Nintendo, we will use the sample parameters.
|
|
class TinyMT {
|
|
public:
|
|
static constexpr std::size_t NumStateWords = 4;
|
|
|
|
struct State {
|
|
std::array<u32, NumStateWords> data{};
|
|
};
|
|
|
|
private:
|
|
static constexpr u32 ParamMat1 = 0x8F7011EE;
|
|
static constexpr u32 ParamMat2 = 0xFC78FF1F;
|
|
static constexpr u32 ParamTmat = 0x3793FDFF;
|
|
|
|
static constexpr u32 ParamMult = 0x6C078965;
|
|
static constexpr u32 ParamPlus = 0x0019660D;
|
|
static constexpr u32 ParamXor = 0x5D588B65;
|
|
|
|
static constexpr u32 TopBitmask = 0x7FFFFFFF;
|
|
|
|
static constexpr int MinimumInitIterations = 8;
|
|
static constexpr int NumDiscardedInitOutputs = 8;
|
|
|
|
static constexpr u32 XorByShifted27(u32 value) {
|
|
return value ^ (value >> 27);
|
|
}
|
|
|
|
static constexpr u32 XorByShifted30(u32 value) {
|
|
return value ^ (value >> 30);
|
|
}
|
|
|
|
private:
|
|
State state{};
|
|
|
|
private:
|
|
// Internal API.
|
|
void FinalizeInitialization() {
|
|
const u32 state0 = this->state.data[0] & TopBitmask;
|
|
const u32 state1 = this->state.data[1];
|
|
const u32 state2 = this->state.data[2];
|
|
const u32 state3 = this->state.data[3];
|
|
|
|
if (state0 == 0 && state1 == 0 && state2 == 0 && state3 == 0) {
|
|
this->state.data[0] = 'T';
|
|
this->state.data[1] = 'I';
|
|
this->state.data[2] = 'N';
|
|
this->state.data[3] = 'Y';
|
|
}
|
|
|
|
for (int i = 0; i < NumDiscardedInitOutputs; i++) {
|
|
this->GenerateRandomU32();
|
|
}
|
|
}
|
|
|
|
u32 GenerateRandomU24() {
|
|
return (this->GenerateRandomU32() >> 8);
|
|
}
|
|
|
|
static void GenerateInitialValuePlus(TinyMT::State* state, int index, u32 value) {
|
|
u32& state0 = state->data[(index + 0) % NumStateWords];
|
|
u32& state1 = state->data[(index + 1) % NumStateWords];
|
|
u32& state2 = state->data[(index + 2) % NumStateWords];
|
|
u32& state3 = state->data[(index + 3) % NumStateWords];
|
|
|
|
const u32 x = XorByShifted27(state0 ^ state1 ^ state3) * ParamPlus;
|
|
const u32 y = x + index + value;
|
|
|
|
state0 = y;
|
|
state1 += x;
|
|
state2 += y;
|
|
}
|
|
|
|
static void GenerateInitialValueXor(TinyMT::State* state, int index) {
|
|
u32& state0 = state->data[(index + 0) % NumStateWords];
|
|
u32& state1 = state->data[(index + 1) % NumStateWords];
|
|
u32& state2 = state->data[(index + 2) % NumStateWords];
|
|
u32& state3 = state->data[(index + 3) % NumStateWords];
|
|
|
|
const u32 x = XorByShifted27(state0 + state1 + state3) * ParamXor;
|
|
const u32 y = x - index;
|
|
|
|
state0 = y;
|
|
state1 ^= x;
|
|
state2 ^= y;
|
|
}
|
|
|
|
public:
|
|
constexpr TinyMT() = default;
|
|
|
|
// Public API.
|
|
|
|
// Initialization.
|
|
void Initialize(u32 seed) {
|
|
this->state.data[0] = seed;
|
|
this->state.data[1] = ParamMat1;
|
|
this->state.data[2] = ParamMat2;
|
|
this->state.data[3] = ParamTmat;
|
|
|
|
for (int i = 1; i < MinimumInitIterations; i++) {
|
|
const u32 mixed = XorByShifted30(this->state.data[(i - 1) % NumStateWords]);
|
|
this->state.data[i % NumStateWords] ^= mixed * ParamMult + i;
|
|
}
|
|
|
|
this->FinalizeInitialization();
|
|
}
|
|
|
|
void Initialize(const u32* seed, int seed_count) {
|
|
this->state.data[0] = 0;
|
|
this->state.data[1] = ParamMat1;
|
|
this->state.data[2] = ParamMat2;
|
|
this->state.data[3] = ParamTmat;
|
|
|
|
{
|
|
const int num_init_iterations = std::max(seed_count + 1, MinimumInitIterations) - 1;
|
|
|
|
GenerateInitialValuePlus(&this->state, 0, seed_count);
|
|
|
|
for (int i = 0; i < num_init_iterations; i++) {
|
|
GenerateInitialValuePlus(&this->state, (i + 1) % NumStateWords,
|
|
(i < seed_count) ? seed[i] : 0);
|
|
}
|
|
|
|
for (int i = 0; i < static_cast<int>(NumStateWords); i++) {
|
|
GenerateInitialValueXor(&this->state,
|
|
(i + 1 + num_init_iterations) % NumStateWords);
|
|
}
|
|
}
|
|
|
|
this->FinalizeInitialization();
|
|
}
|
|
|
|
// State management.
|
|
void GetState(TinyMT::State& out) const {
|
|
out.data = this->state.data;
|
|
}
|
|
|
|
void SetState(const TinyMT::State& state_) {
|
|
this->state.data = state_.data;
|
|
}
|
|
|
|
// Random generation.
|
|
void GenerateRandomBytes(void* dst, std::size_t size) {
|
|
const uintptr_t start = reinterpret_cast<uintptr_t>(dst);
|
|
const uintptr_t end = start + size;
|
|
const uintptr_t aligned_start = Common::AlignUp(start, 4);
|
|
const uintptr_t aligned_end = Common::AlignDown(end, 4);
|
|
|
|
// Make sure we're aligned.
|
|
if (start < aligned_start) {
|
|
const u32 rnd = this->GenerateRandomU32();
|
|
std::memcpy(dst, &rnd, aligned_start - start);
|
|
}
|
|
|
|
// Write as many aligned u32s as we can.
|
|
{
|
|
u32* cur_dst = reinterpret_cast<u32*>(aligned_start);
|
|
u32* const end_dst = reinterpret_cast<u32*>(aligned_end);
|
|
|
|
while (cur_dst < end_dst) {
|
|
*(cur_dst++) = this->GenerateRandomU32();
|
|
}
|
|
}
|
|
|
|
// Handle any leftover unaligned data.
|
|
if (aligned_end < end) {
|
|
const u32 rnd = this->GenerateRandomU32();
|
|
std::memcpy(reinterpret_cast<void*>(aligned_end), &rnd, end - aligned_end);
|
|
}
|
|
}
|
|
|
|
u32 GenerateRandomU32() {
|
|
// Advance state.
|
|
const u32 x0 =
|
|
(this->state.data[0] & TopBitmask) ^ this->state.data[1] ^ this->state.data[2];
|
|
const u32 y0 = this->state.data[3];
|
|
const u32 x1 = x0 ^ (x0 << 1);
|
|
const u32 y1 = y0 ^ (y0 >> 1) ^ x1;
|
|
|
|
const u32 state0 = this->state.data[1];
|
|
u32 state1 = this->state.data[2];
|
|
u32 state2 = x1 ^ (y1 << 10);
|
|
const u32 state3 = y1;
|
|
|
|
if ((y1 & 1) != 0) {
|
|
state1 ^= ParamMat1;
|
|
state2 ^= ParamMat2;
|
|
}
|
|
|
|
this->state.data[0] = state0;
|
|
this->state.data[1] = state1;
|
|
this->state.data[2] = state2;
|
|
this->state.data[3] = state3;
|
|
|
|
// Temper.
|
|
const u32 t1 = state0 + (state2 >> 8);
|
|
u32 t0 = state3 ^ t1;
|
|
|
|
if ((t1 & 1) != 0) {
|
|
t0 ^= ParamTmat;
|
|
}
|
|
|
|
return t0;
|
|
}
|
|
|
|
u64 GenerateRandomU64() {
|
|
const u32 lo = this->GenerateRandomU32();
|
|
const u32 hi = this->GenerateRandomU32();
|
|
return (u64{hi} << 32) | u64{lo};
|
|
}
|
|
|
|
float GenerateRandomF32() {
|
|
// Floats have 24 bits of mantissa.
|
|
constexpr u32 MantissaBits = 24;
|
|
return static_cast<float>(GenerateRandomU24()) * (1.0f / (1U << MantissaBits));
|
|
}
|
|
|
|
double GenerateRandomF64() {
|
|
// Doubles have 53 bits of mantissa.
|
|
// The smart way to generate 53 bits of random would be to use 32 bits
|
|
// from the first rnd32() call, and then 21 from the second.
|
|
// Nintendo does not. They use (32 - 5) = 27 bits from the first rnd32()
|
|
// call, and (32 - 6) bits from the second. We'll do what they do, but
|
|
// There's not a clear reason why.
|
|
constexpr u32 MantissaBits = 53;
|
|
constexpr u32 Shift1st = (64 - MantissaBits) / 2;
|
|
constexpr u32 Shift2nd = (64 - MantissaBits) - Shift1st;
|
|
|
|
const u32 first = (this->GenerateRandomU32() >> Shift1st);
|
|
const u32 second = (this->GenerateRandomU32() >> Shift2nd);
|
|
|
|
return (1.0 * first * (u64{1} << (32 - Shift2nd)) + second) *
|
|
(1.0 / (u64{1} << MantissaBits));
|
|
}
|
|
};
|
|
|
|
} // namespace Common
|