yuzu/src/core/hle/result.h

361 lines
10 KiB
C++
Raw Normal View History

// Copyright 2014 Citra Emulator Project
2014-12-17 06:38:14 +01:00
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
2015-06-21 14:40:28 +02:00
#include <new>
#include <utility>
2015-05-06 09:06:12 +02:00
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_types.h"
// All the constants in this file come from http://switchbrew.org/index.php?title=Error_codes
/**
* Identifies the module which caused the error. Error codes can be propagated through a call
* chain, meaning that this doesn't always correspond to the module where the API call made is
* contained.
*/
enum class ErrorModule : u32 {
Common = 0,
Kernel = 1,
FS = 2,
2018-05-23 14:22:42 +02:00
OS = 3, // used for Memory, Thread, Mutex, Nvidia
HTCS = 4,
NCM = 5,
DD = 6,
LR = 8,
Loader = 9,
CMIF = 10,
HIPC = 11,
PM = 15,
NS = 16,
HTC = 18,
NCMContent = 20,
SM = 21,
RO = 22,
SDMMC = 24,
OVLN = 25,
SPL = 26,
ETHC = 100,
I2C = 101,
GPIO = 102,
UART = 103,
Settings = 105,
WLAN = 107,
XCD = 108,
NIFM = 110,
Hwopus = 111,
Bluetooth = 113,
VI = 114,
NFP = 115,
Time = 116,
FGM = 117,
2018-05-23 14:22:42 +02:00
OE = 118,
PCIe = 120,
Friends = 121,
BCAT = 122,
SSLSrv = 123,
Account = 124,
News = 125,
Mii = 126,
NFC = 127,
AM = 128,
PlayReport = 129,
AHID = 130,
Qlaunch = 132,
PCV = 133,
OMM = 134,
BPC = 135,
PSM = 136,
NIM = 137,
PSC = 138,
TC = 139,
USB = 140,
NSD = 141,
PCTL = 142,
BTM = 143,
ETicket = 145,
NGC = 146,
ERPT = 147,
APM = 148,
2018-05-23 14:22:42 +02:00
Profiler = 150,
ErrorUpload = 151,
Audio = 153,
NPNS = 154,
NPNSHTTPSTREAM = 155,
ARP = 157,
2018-05-23 14:22:42 +02:00
SWKBD = 158,
BOOT = 159,
NFCMifare = 161,
UserlandAssert = 162,
Fatal = 163,
NIMShop = 164,
SPSM = 165,
BGTC = 167,
UserlandCrash = 168,
SREPO = 180,
2018-05-23 14:22:42 +02:00
Dauth = 181,
HID = 202,
LDN = 203,
Irsensor = 205,
Capture = 206,
Manu = 208,
2018-05-23 14:22:42 +02:00
ATK = 209,
GRC = 212,
Migration = 216,
MigrationLdcServ = 217,
GeneralWebApplet = 800,
WifiWebAuthApplet = 809,
WhitelistedApplet = 810,
ShopN = 811,
};
/// Encapsulates a Horizon OS error code, allowing it to be separated into its constituent fields.
union ResultCode {
u32 raw;
BitField<0, 9, ErrorModule> module;
BitField<9, 13, u32> description;
constexpr explicit ResultCode(u32 raw_) : raw(raw_) {}
constexpr ResultCode(ErrorModule module_, u32 description_)
: raw(module.FormatValue(module_) | description.FormatValue(description_)) {}
constexpr bool IsSuccess() const {
return raw == 0;
}
constexpr bool IsError() const {
return raw != 0;
}
};
constexpr bool operator==(const ResultCode& a, const ResultCode& b) {
return a.raw == b.raw;
}
constexpr bool operator!=(const ResultCode& a, const ResultCode& b) {
return a.raw != b.raw;
}
// Convenience functions for creating some common kinds of errors:
/// The default success `ResultCode`.
constexpr ResultCode RESULT_SUCCESS(0);
/**
* Placeholder result code used for unknown error codes.
*
* @note This should only be used when a particular error code
* is not known yet.
*/
constexpr ResultCode RESULT_UNKNOWN(UINT32_MAX);
/**
* This is an optional value type. It holds a `ResultCode` and, if that code is a success code,
* also holds a result of type `T`. If the code is an error code then trying to access the inner
* value fails, thus ensuring that the ResultCode of functions is always checked properly before
* their return value is used. It is similar in concept to the `std::optional` type
* (http://en.cppreference.com/w/cpp/experimental/optional) originally proposed for inclusion in
* C++14, or the `Result` type in Rust (http://doc.rust-lang.org/std/result/index.html).
*
* An example of how it could be used:
* \code
* ResultVal<int> Frobnicate(float strength) {
* if (strength < 0.f || strength > 1.0f) {
* // Can't frobnicate too weakly or too strongly
* return ResultCode(ErrorDescription::OutOfRange, ErrorModule::Common,
* ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
* } else {
* // Frobnicated! Give caller a cookie
* return MakeResult<int>(42);
* }
* }
* \endcode
*
* \code
* ResultVal<int> frob_result = Frobnicate(0.75f);
* if (frob_result) {
* // Frobbed ok
* printf("My cookie is %d\n", *frob_result);
* } else {
* printf("Guess I overdid it. :( Error code: %ux\n", frob_result.code().hex);
* }
* \endcode
*/
template <typename T>
class ResultVal {
public:
/// Constructs an empty `ResultVal` with the given error code. The code must not be a success
/// code.
ResultVal(ResultCode error_code = RESULT_UNKNOWN) : result_code(error_code) {
ASSERT(error_code.IsError());
}
/**
* Similar to the non-member function `MakeResult`, with the exception that you can manually
* specify the success code. `success_code` must not be an error code.
*/
template <typename... Args>
static ResultVal WithCode(ResultCode success_code, Args&&... args) {
ResultVal<T> result;
result.emplace(success_code, std::forward<Args>(args)...);
return result;
}
ResultVal(const ResultVal& o) : result_code(o.result_code) {
if (!o.empty()) {
new (&object) T(o.object);
}
}
ResultVal(ResultVal&& o) noexcept : result_code(o.result_code) {
if (!o.empty()) {
new (&object) T(std::move(o.object));
}
}
~ResultVal() {
if (!empty()) {
object.~T();
}
}
ResultVal& operator=(const ResultVal& o) {
if (this == &o) {
return *this;
}
if (!empty()) {
if (!o.empty()) {
object = o.object;
} else {
object.~T();
}
} else {
if (!o.empty()) {
new (&object) T(o.object);
}
}
result_code = o.result_code;
return *this;
}
/**
* Replaces the current result with a new constructed result value in-place. The code must not
* be an error code.
*/
template <typename... Args>
void emplace(ResultCode success_code, Args&&... args) {
ASSERT(success_code.IsSuccess());
if (!empty()) {
object.~T();
}
new (&object) T(std::forward<Args>(args)...);
result_code = success_code;
}
/// Returns true if the `ResultVal` contains an error code and no value.
bool empty() const {
return result_code.IsError();
}
/// Returns true if the `ResultVal` contains a return value.
bool Succeeded() const {
return result_code.IsSuccess();
}
/// Returns true if the `ResultVal` contains an error code and no value.
bool Failed() const {
return empty();
}
ResultCode Code() const {
return result_code;
}
const T& operator*() const {
return object;
}
T& operator*() {
return object;
}
const T* operator->() const {
return &object;
}
T* operator->() {
return &object;
}
/// Returns the value contained in this `ResultVal`, or the supplied default if it is missing.
template <typename U>
T ValueOr(U&& value) const {
return !empty() ? object : std::move(value);
}
/// Asserts that the result succeeded and returns a reference to it.
T& Unwrap() & {
ASSERT_MSG(Succeeded(), "Tried to Unwrap empty ResultVal");
return **this;
}
T&& Unwrap() && {
ASSERT_MSG(Succeeded(), "Tried to Unwrap empty ResultVal");
return std::move(**this);
}
private:
// A union is used to allocate the storage for the value, while allowing us to construct and
// destruct it at will.
union {
T object;
};
ResultCode result_code;
};
/**
* This function is a helper used to construct `ResultVal`s. It receives the arguments to construct
* `T` with and creates a success `ResultVal` contained the constructed value.
*/
template <typename T, typename... Args>
ResultVal<T> MakeResult(Args&&... args) {
return ResultVal<T>::WithCode(RESULT_SUCCESS, std::forward<Args>(args)...);
}
/**
* Deducible overload of MakeResult, allowing the template parameter to be ommited if you're just
* copy or move constructing.
*/
template <typename Arg>
ResultVal<std::remove_reference_t<Arg>> MakeResult(Arg&& arg) {
return ResultVal<std::remove_reference_t<Arg>>::WithCode(RESULT_SUCCESS,
std::forward<Arg>(arg));
}
/**
* Check for the success of `source` (which must evaluate to a ResultVal). If it succeeds, unwraps
* the contained value and assigns it to `target`, which can be either an l-value expression or a
* variable declaration. If it fails the return code is returned from the current function. Thus it
* can be used to cascade errors out, achieving something akin to exception handling.
*/
#define CASCADE_RESULT(target, source) \
auto CONCAT2(check_result_L, __LINE__) = source; \
if (CONCAT2(check_result_L, __LINE__).Failed()) { \
return CONCAT2(check_result_L, __LINE__).Code(); \
} \
target = std::move(*CONCAT2(check_result_L, __LINE__))
/**
* Analogous to CASCADE_RESULT, but for a bare ResultCode. The code will be propagated if
* non-success, or discarded otherwise.
*/
#define CASCADE_CODE(source) \
do { \
auto CONCAT2(check_result_L, __LINE__) = source; \
if (CONCAT2(check_result_L, __LINE__).IsError()) { \
return CONCAT2(check_result_L, __LINE__); \
} \
} while (false)