yuzu/src/input_common/gcadapter/gc_poller.cpp

357 lines
12 KiB
C++
Raw Normal View History

2020-06-21 21:31:57 +02:00
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2020-06-21 18:36:28 +02:00
#include <atomic>
#include <list>
#include <mutex>
#include <utility>
#include "common/assert.h"
2020-06-21 18:36:28 +02:00
#include "common/threadsafe_queue.h"
2020-06-21 21:31:57 +02:00
#include "input_common/gcadapter/gc_adapter.h"
#include "input_common/gcadapter/gc_poller.h"
2020-06-21 18:36:28 +02:00
namespace InputCommon {
class GCButton final : public Input::ButtonDevice {
public:
explicit GCButton(u32 port_, s32 button_, const GCAdapter::Adapter* adapter)
: port(port_), button(button_), gcadapter(adapter) {}
2020-06-21 18:36:28 +02:00
~GCButton() override;
bool GetStatus() const override {
if (gcadapter->DeviceConnected(port)) {
return (gcadapter->GetPadState(port).buttons & button) != 0;
}
return false;
2020-06-21 18:36:28 +02:00
}
private:
const u32 port;
const s32 button;
const GCAdapter::Adapter* gcadapter;
2020-06-21 18:36:28 +02:00
};
class GCAxisButton final : public Input::ButtonDevice {
public:
explicit GCAxisButton(u32 port_, u32 axis_, float threshold_, bool trigger_if_greater_,
const GCAdapter::Adapter* adapter)
: port(port_), axis(axis_), threshold(threshold_), trigger_if_greater(trigger_if_greater_),
gcadapter(adapter) {}
2020-06-21 18:36:28 +02:00
bool GetStatus() const override {
if (gcadapter->DeviceConnected(port)) {
const float current_axis_value = gcadapter->GetPadState(port).axis_values.at(axis);
const float axis_value = current_axis_value / 128.0f;
if (trigger_if_greater) {
// TODO: Might be worthwile to set a slider for the trigger threshold. It is
// currently always set to 0.5 in configure_input_player.cpp ZL/ZR HandleClick
return axis_value > threshold;
}
return axis_value < -threshold;
2020-06-21 18:36:28 +02:00
}
return false;
2020-06-21 18:36:28 +02:00
}
private:
const u32 port;
const u32 axis;
2020-06-21 18:36:28 +02:00
float threshold;
bool trigger_if_greater;
const GCAdapter::Adapter* gcadapter;
2020-06-21 18:36:28 +02:00
};
GCButtonFactory::GCButtonFactory(std::shared_ptr<GCAdapter::Adapter> adapter_)
: adapter(std::move(adapter_)) {}
2020-06-21 18:36:28 +02:00
GCButton::~GCButton() = default;
2020-06-21 18:36:28 +02:00
std::unique_ptr<Input::ButtonDevice> GCButtonFactory::Create(const Common::ParamPackage& params) {
const auto button_id = params.Get("button", 0);
const auto port = static_cast<u32>(params.Get("port", 0));
constexpr s32 PAD_STICK_ID = static_cast<s32>(GCAdapter::PadButton::Stick);
// button is not an axis/stick button
if (button_id != PAD_STICK_ID) {
return std::make_unique<GCButton>(port, button_id, adapter.get());
}
2020-06-21 18:36:28 +02:00
// For Axis buttons, used by the binary sticks.
if (button_id == PAD_STICK_ID) {
2020-06-21 18:36:28 +02:00
const int axis = params.Get("axis", 0);
const float threshold = params.Get("threshold", 0.25f);
2020-06-21 18:36:28 +02:00
const std::string direction_name = params.Get("direction", "");
bool trigger_if_greater;
if (direction_name == "+") {
trigger_if_greater = true;
} else if (direction_name == "-") {
trigger_if_greater = false;
} else {
trigger_if_greater = true;
LOG_ERROR(Input, "Unknown direction {}", direction_name);
}
return std::make_unique<GCAxisButton>(port, axis, threshold, trigger_if_greater,
adapter.get());
2020-06-21 18:36:28 +02:00
}
return nullptr;
2020-06-21 18:36:28 +02:00
}
Common::ParamPackage GCButtonFactory::GetNextInput() const {
2020-06-21 18:36:28 +02:00
Common::ParamPackage params;
GCAdapter::GCPadStatus pad;
auto& queue = adapter->GetPadQueue();
while (queue.Pop(pad)) {
// This while loop will break on the earliest detected button
params.Set("engine", "gcpad");
params.Set("port", static_cast<s32>(pad.port));
if (pad.button != GCAdapter::PadButton::Undefined) {
params.Set("button", static_cast<u16>(pad.button));
}
// For Axis button implementation
if (pad.axis != GCAdapter::PadAxes::Undefined) {
params.Set("axis", static_cast<u8>(pad.axis));
params.Set("button", static_cast<u16>(GCAdapter::PadButton::Stick));
params.Set("threshold", "0.25");
if (pad.axis_value > 0) {
params.Set("direction", "+");
} else {
params.Set("direction", "-");
2020-06-21 18:36:28 +02:00
}
break;
2020-06-21 18:36:28 +02:00
}
}
return params;
}
void GCButtonFactory::BeginConfiguration() {
polling = true;
adapter->BeginConfiguration();
2020-06-21 18:36:28 +02:00
}
void GCButtonFactory::EndConfiguration() {
polling = false;
adapter->EndConfiguration();
2020-06-21 18:36:28 +02:00
}
class GCAnalog final : public Input::AnalogDevice {
public:
explicit GCAnalog(u32 port_, u32 axis_x_, u32 axis_y_, bool invert_x_, bool invert_y_,
float deadzone_, float range_, const GCAdapter::Adapter* adapter)
: port(port_), axis_x(axis_x_), axis_y(axis_y_), invert_x(invert_x_), invert_y(invert_y_),
deadzone(deadzone_), range(range_), gcadapter(adapter) {}
2020-06-21 18:36:28 +02:00
float GetAxis(u32 axis) const {
if (gcadapter->DeviceConnected(port)) {
std::lock_guard lock{mutex};
const auto axis_value =
static_cast<float>(gcadapter->GetPadState(port).axis_values.at(axis));
return (axis_value) / (100.0f * range);
}
return 0.0f;
2020-06-21 18:36:28 +02:00
}
std::pair<float, float> GetAnalog(u32 analog_axis_x, u32 analog_axis_y) const {
float x = GetAxis(analog_axis_x);
float y = GetAxis(analog_axis_y);
if (invert_x) {
x = -x;
}
if (invert_y) {
y = -y;
}
2020-06-21 18:36:28 +02:00
// Make sure the coordinates are in the unit circle,
// otherwise normalize it.
float r = x * x + y * y;
if (r > 1.0f) {
r = std::sqrt(r);
x /= r;
y /= r;
}
return {x, y};
2020-06-21 18:36:28 +02:00
}
std::tuple<float, float> GetStatus() const override {
const auto [x, y] = GetAnalog(axis_x, axis_y);
const float r = std::sqrt((x * x) + (y * y));
if (r > deadzone) {
return {x / r * (r - deadzone) / (1 - deadzone),
y / r * (r - deadzone) / (1 - deadzone)};
2020-06-21 18:36:28 +02:00
}
return {0.0f, 0.0f};
2020-06-21 18:36:28 +02:00
}
std::tuple<float, float> GetRawStatus() const override {
const float x = GetAxis(axis_x);
const float y = GetAxis(axis_y);
return {x, y};
}
Input::AnalogProperties GetAnalogProperties() const override {
return {deadzone, range, 0.5f};
}
2020-06-21 18:36:28 +02:00
bool GetAnalogDirectionStatus(Input::AnalogDirection direction) const override {
const auto [x, y] = GetStatus();
const float directional_deadzone = 0.5f;
2020-06-21 18:36:28 +02:00
switch (direction) {
case Input::AnalogDirection::RIGHT:
return x > directional_deadzone;
case Input::AnalogDirection::LEFT:
return x < -directional_deadzone;
case Input::AnalogDirection::UP:
return y > directional_deadzone;
case Input::AnalogDirection::DOWN:
return y < -directional_deadzone;
}
return false;
}
private:
const u32 port;
const u32 axis_x;
const u32 axis_y;
const bool invert_x;
const bool invert_y;
2020-06-21 18:36:28 +02:00
const float deadzone;
const float range;
const GCAdapter::Adapter* gcadapter;
2020-06-21 18:36:28 +02:00
mutable std::mutex mutex;
};
/// An analog device factory that creates analog devices from GC Adapter
GCAnalogFactory::GCAnalogFactory(std::shared_ptr<GCAdapter::Adapter> adapter_)
: adapter(std::move(adapter_)) {}
2020-06-21 18:36:28 +02:00
/**
2020-06-21 21:31:57 +02:00
* Creates analog device from joystick axes
* @param params contains parameters for creating the device:
* - "port": the nth gcpad on the adapter
* - "axis_x": the index of the axis to be bind as x-axis
* - "axis_y": the index of the axis to be bind as y-axis
*/
2020-06-21 18:36:28 +02:00
std::unique_ptr<Input::AnalogDevice> GCAnalogFactory::Create(const Common::ParamPackage& params) {
const auto port = static_cast<u32>(params.Get("port", 0));
const auto axis_x = static_cast<u32>(params.Get("axis_x", 0));
const auto axis_y = static_cast<u32>(params.Get("axis_y", 1));
const auto deadzone = std::clamp(params.Get("deadzone", 0.0f), 0.0f, 1.0f);
const auto range = std::clamp(params.Get("range", 1.0f), 0.50f, 1.50f);
const std::string invert_x_value = params.Get("invert_x", "+");
const std::string invert_y_value = params.Get("invert_y", "+");
const bool invert_x = invert_x_value == "-";
const bool invert_y = invert_y_value == "-";
2020-06-21 18:36:28 +02:00
return std::make_unique<GCAnalog>(port, axis_x, axis_y, invert_x, invert_y, deadzone, range,
adapter.get());
2020-06-21 18:36:28 +02:00
}
void GCAnalogFactory::BeginConfiguration() {
polling = true;
adapter->BeginConfiguration();
2020-06-21 18:36:28 +02:00
}
void GCAnalogFactory::EndConfiguration() {
polling = false;
adapter->EndConfiguration();
2020-06-21 18:36:28 +02:00
}
Common::ParamPackage GCAnalogFactory::GetNextInput() {
GCAdapter::GCPadStatus pad;
Common::ParamPackage params;
auto& queue = adapter->GetPadQueue();
while (queue.Pop(pad)) {
if (pad.button != GCAdapter::PadButton::Undefined) {
params.Set("engine", "gcpad");
params.Set("port", static_cast<s32>(pad.port));
params.Set("button", static_cast<u16>(pad.button));
return params;
}
if (pad.axis == GCAdapter::PadAxes::Undefined ||
std::abs(static_cast<float>(pad.axis_value) / 128.0f) < 0.1f) {
continue;
}
// An analog device needs two axes, so we need to store the axis for later and wait for
// a second input event. The axes also must be from the same joystick.
const u8 axis = static_cast<u8>(pad.axis);
if (axis == 0 || axis == 1) {
analog_x_axis = 0;
analog_y_axis = 1;
controller_number = static_cast<s32>(pad.port);
break;
}
if (axis == 2 || axis == 3) {
analog_x_axis = 2;
analog_y_axis = 3;
controller_number = static_cast<s32>(pad.port);
break;
}
if (analog_x_axis == -1) {
analog_x_axis = axis;
controller_number = static_cast<s32>(pad.port);
} else if (analog_y_axis == -1 && analog_x_axis != axis &&
controller_number == static_cast<s32>(pad.port)) {
analog_y_axis = axis;
break;
2020-06-21 18:36:28 +02:00
}
}
if (analog_x_axis != -1 && analog_y_axis != -1) {
params.Set("engine", "gcpad");
params.Set("port", controller_number);
params.Set("axis_x", analog_x_axis);
params.Set("axis_y", analog_y_axis);
params.Set("invert_x", "+");
params.Set("invert_y", "+");
2020-06-21 18:36:28 +02:00
analog_x_axis = -1;
analog_y_axis = -1;
controller_number = -1;
return params;
}
return params;
}
class GCVibration final : public Input::VibrationDevice {
public:
explicit GCVibration(u32 port_, GCAdapter::Adapter* adapter)
: port(port_), gcadapter(adapter) {}
u8 GetStatus() const override {
return gcadapter->RumblePlay(port, 0);
}
bool SetRumblePlay(f32 amp_low, [[maybe_unused]] f32 freq_low, f32 amp_high,
[[maybe_unused]] f32 freq_high) const override {
const auto mean_amplitude = (amp_low + amp_high) * 0.5f;
2020-11-19 18:30:52 +01:00
const auto processed_amplitude =
static_cast<u8>((mean_amplitude + std::pow(mean_amplitude, 0.3f)) * 0.5f * 0x8);
return gcadapter->RumblePlay(port, processed_amplitude);
}
private:
const u32 port;
GCAdapter::Adapter* gcadapter;
};
/// An vibration device factory that creates vibration devices from GC Adapter
GCVibrationFactory::GCVibrationFactory(std::shared_ptr<GCAdapter::Adapter> adapter_)
: adapter(std::move(adapter_)) {}
/**
* Creates a vibration device from a joystick
* @param params contains parameters for creating the device:
* - "port": the nth gcpad on the adapter
*/
std::unique_ptr<Input::VibrationDevice> GCVibrationFactory::Create(
const Common::ParamPackage& params) {
const auto port = static_cast<u32>(params.Get("port", 0));
return std::make_unique<GCVibration>(port, adapter.get());
}
2020-06-21 18:36:28 +02:00
} // namespace InputCommon