-converted tabs to spaces

-moved scratchpad memory out of MemArena
This commit is contained in:
bunnei 2014-04-01 18:18:02 -04:00
parent 81b61ee720
commit e05be0145c
2 changed files with 144 additions and 148 deletions

View File

@ -33,74 +33,71 @@
namespace Memory { namespace Memory {
u8* g_base = NULL; ///< The base pointer to the auto-mirrored arena. u8* g_base = NULL; ///< The base pointer to the auto-mirrored arena.
MemArena g_arena; ///< The MemArena class MemArena g_arena; ///< The MemArena class
u8* g_bootrom = NULL; ///< Bootrom memory (super secret code/data @ 0x8000) pointer u8* g_bootrom = NULL; ///< Bootrom physical memory
u8* g_fcram = NULL; ///< Main memory (FCRAM) pointer u8* g_fcram = NULL; ///< Main memory (FCRAM) pointer
u8* g_vram = NULL; ///< Video memory (VRAM) pointer u8* g_vram = NULL; ///< Video memory (VRAM) pointer
u8* g_scratchpad = NULL; ///< [Hack] Seperate mem for stack space because I don't know where this goes u8* g_scratchpad = NULL; ///< Scratchpad memory - Used for main thread stack
u8* g_physical_bootrom = NULL; ///< Bootrom physical memory (super secret code/data @ 0x8000) u8* g_physical_bootrom = NULL; ///< Bootrom physical memory
u8* g_uncached_bootrom = NULL; u8* g_uncached_bootrom = NULL;
u8* g_physical_fcram = NULL; ///< Main physical memory (FCRAM)
u8* g_physical_vram = NULL; ///< Video physical memory (VRAM)
u8* g_physical_scratchpad = NULL; ///< Scratchpad memory used for main thread stack
u8* g_physical_fcram = NULL; ///< Main physical memory (FCRAM)
u8* g_physical_vram = NULL; ///< Video physical memory (VRAM)
u8* g_physical_scratchpad = NULL; ///< Scratchpad memory used for main thread stack
// We don't declare the IO region in here since its handled by other means. // We don't declare the IO region in here since its handled by other means.
static MemoryView g_views[] = static MemoryView g_views[] = {
{ { &g_vram, &g_physical_vram, MEM_VRAM_VADDR, MEM_VRAM_SIZE, 0 },
{&g_scratchpad, &g_physical_scratchpad, 0x00000000, MEM_SCRATCHPAD_SIZE, 0 }, { &g_fcram, &g_physical_fcram, MEM_FCRAM_VADDR, MEM_FCRAM_SIZE, MV_IS_PRIMARY_RAM },
// {&g_bootrom, &g_physical_bootrom, 0x00000000, MEM_BOOTROM_SIZE, 0},
// {NULL, &g_uncached_bootrom, 0x00010000, MEM_BOOTROM_SIZE, MV_MIRROR_PREVIOUS},
// {NULL, NULL, 0x17E00000, MEM_MPCORE_PRIV_SIZE, 0},
{&g_vram, &g_physical_vram, MEM_VRAM_VADDR, MEM_VRAM_SIZE, MV_IS_PRIMARY_RAM},
// {NULL, NULL, 0x1FF00000, MEM_DSP_SIZE, 0},
// {NULL, NULL, 0x1FF80000, MEM_AXI_WRAM_SIZE, 0},
{&g_fcram, &g_physical_fcram, MEM_FCRAM_VADDR, MEM_FCRAM_SIZE, MV_IS_PRIMARY_RAM},
}; };
/*static MemoryView views[] = /*static MemoryView views[] =
{ {
{&m_pScratchPad, &m_pPhysicalScratchPad, 0x00010000, SCRATCHPAD_SIZE, 0}, {&m_pScratchPad, &m_pPhysicalScratchPad, 0x00010000, SCRATCHPAD_SIZE, 0},
{NULL, &m_pUncachedScratchPad, 0x40010000, SCRATCHPAD_SIZE, MV_MIRROR_PREVIOUS}, {NULL, &m_pUncachedScratchPad, 0x40010000, SCRATCHPAD_SIZE, MV_MIRROR_PREVIOUS},
{&m_pVRAM, &m_pPhysicalVRAM, 0x04000000, 0x00800000, 0}, {&m_pVRAM, &m_pPhysicalVRAM, 0x04000000, 0x00800000, 0},
{NULL, &m_pUncachedVRAM, 0x44000000, 0x00800000, MV_MIRROR_PREVIOUS}, {NULL, &m_pUncachedVRAM, 0x44000000, 0x00800000, MV_MIRROR_PREVIOUS},
{&m_pRAM, &m_pPhysicalRAM, 0x08000000, g_MemorySize, MV_IS_PRIMARY_RAM}, // only from 0x08800000 is it usable (last 24 megs) {&m_pRAM, &m_pPhysicalRAM, 0x08000000, g_MemorySize, MV_IS_PRIMARY_RAM}, // only from 0x08800000 is it usable (last 24 megs)
{NULL, &m_pUncachedRAM, 0x48000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM}, {NULL, &m_pUncachedRAM, 0x48000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
{NULL, &m_pKernelRAM, 0x88000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM}, {NULL, &m_pKernelRAM, 0x88000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
// TODO: There are a few swizzled mirrors of VRAM, not sure about the best way to // TODO: There are a few swizzled mirrors of VRAM, not sure about the best way to
// implement those. // implement those.
};*/ };*/
static const int kNumMemViews = sizeof(g_views) / sizeof(MemoryView); ///< Number of mem views static const int kNumMemViews = sizeof(g_views) / sizeof(MemoryView); ///< Number of mem views
void Init() { void Init() {
int flags = 0; int flags = 0;
for (size_t i = 0; i < ARRAY_SIZE(g_views); i++) { for (size_t i = 0; i < ARRAY_SIZE(g_views); i++) {
if (g_views[i].flags & MV_IS_PRIMARY_RAM) if (g_views[i].flags & MV_IS_PRIMARY_RAM)
g_views[i].size = MEM_FCRAM_SIZE; g_views[i].size = MEM_FCRAM_SIZE;
} }
g_base = MemoryMap_Setup(g_views, kNumMemViews, flags, &g_arena); g_base = MemoryMap_Setup(g_views, kNumMemViews, flags, &g_arena);
NOTICE_LOG(MEMMAP, "Memory system initialized. RAM at %p (mirror at 0 @ %p)", g_fcram, g_scratchpad = new u8[MEM_SCRATCHPAD_SIZE];
g_physical_fcram);
NOTICE_LOG(MEMMAP, "Memory system initialized. RAM at %p (mirror at 0 @ %p)", g_fcram,
g_physical_fcram);
} }
void Shutdown() { void Shutdown() {
u32 flags = 0; u32 flags = 0;
MemoryMap_Shutdown(g_views, kNumMemViews, flags, &g_arena); MemoryMap_Shutdown(g_views, kNumMemViews, flags, &g_arena);
g_arena.ReleaseSpace();
g_base = NULL; g_arena.ReleaseSpace();
NOTICE_LOG(MEMMAP, "Memory system shut down."); delete[] g_scratchpad;
g_base = NULL;
g_scratchpad = NULL;
NOTICE_LOG(MEMMAP, "Memory system shut down.");
} }

View File

@ -29,157 +29,156 @@
namespace Memory { namespace Memory {
template <typename T> template <typename T>
inline void ReadFromHardware(T &var, const u32 addr) inline void ReadFromHardware(T &var, const u32 addr) {
{ // TODO: Figure out the fastest order of tests for both read and write (they are probably different).
// TODO: Figure out the fastest order of tests for both read and write (they are probably different). // TODO: Make sure this represents the mirrors in a correct way.
// TODO: Make sure this represents the mirrors in a correct way.
// Could just do a base-relative read, too.... TODO // Could just do a base-relative read, too.... TODO
if ((addr & 0x3E000000) == 0x08000000) { if ((addr & 0x3E000000) == 0x08000000) {
var = *((const T*)&g_fcram[addr & MEM_FCRAM_MASK]); var = *((const T*)&g_fcram[addr & MEM_FCRAM_MASK]);
// Scratchpad memory // Scratchpad memory
} else if (addr > MEM_SCRATCHPAD_VADDR && addr <= (MEM_SCRATCHPAD_VADDR + MEM_SCRATCHPAD_SIZE)) { } else if (addr > MEM_SCRATCHPAD_VADDR && addr <= (MEM_SCRATCHPAD_VADDR + MEM_SCRATCHPAD_SIZE)) {
var = *((const T*)&g_scratchpad[addr & MEM_SCRATCHPAD_MASK]); var = *((const T*)&g_scratchpad[addr & MEM_SCRATCHPAD_MASK]);
} }
/*else if ((addr & 0x3F800000) == 0x04000000) { /*else if ((addr & 0x3F800000) == 0x04000000) {
var = *((const T*)&m_pVRAM[addr & VRAM_MASK]); var = *((const T*)&m_pVRAM[addr & VRAM_MASK]);
}*/ }*/
else { else {
_assert_msg_(MEMMAP, false, "unknown hardware read"); _assert_msg_(MEMMAP, false, "unknown hardware read");
// WARN_LOG(MEMMAP, "ReadFromHardware: Invalid addr %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]); // WARN_LOG(MEMMAP, "ReadFromHardware: Invalid addr %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
} }
} }
template <typename T> template <typename T>
inline void WriteToHardware(u32 addr, const T data) { inline void WriteToHardware(u32 addr, const T data) {
NOTICE_LOG(MEMMAP, "Test1 %08X", addr); NOTICE_LOG(MEMMAP, "Test1 %08X", addr);
// ExeFS:/.code is loaded here: // ExeFS:/.code is loaded here:
if ((addr & 0xFFF00000) == 0x00100000) { if ((addr & 0xFFF00000) == 0x00100000) {
// TODO(ShizZy): This is dumb... handle correctly. From 3DBrew: // TODO(ShizZy): This is dumb... handle correctly. From 3DBrew:
// http://3dbrew.org/wiki/Memory_layout#ARM11_User-land_memory_regions // http://3dbrew.org/wiki/Memory_layout#ARM11_User-land_memory_regions
// The ExeFS:/.code is loaded here, executables must be loaded to the 0x00100000 region when // The ExeFS:/.code is loaded here, executables must be loaded to the 0x00100000 region when
// the exheader "special memory" flag is clear. The 0x03F00000-byte size restriction only // the exheader "special memory" flag is clear. The 0x03F00000-byte size restriction only
// applies when this flag is clear. Executables are usually loaded to 0x14000000 when the // applies when this flag is clear. Executables are usually loaded to 0x14000000 when the
// exheader "special memory" flag is set, however this address can be arbitrary. // exheader "special memory" flag is set, however this address can be arbitrary.
*(T*)&g_fcram[addr & MEM_FCRAM_MASK] = data; *(T*)&g_fcram[addr & MEM_FCRAM_MASK] = data;
NOTICE_LOG(MEMMAP, "Test2"); NOTICE_LOG(MEMMAP, "Test2");
// Scratchpad memory // Scratchpad memory
} else if (addr > MEM_SCRATCHPAD_VADDR && addr <= (MEM_SCRATCHPAD_VADDR + MEM_SCRATCHPAD_SIZE)) { } else if (addr > MEM_SCRATCHPAD_VADDR && addr <= (MEM_SCRATCHPAD_VADDR + MEM_SCRATCHPAD_SIZE)) {
*(T*)&g_scratchpad[addr & MEM_SCRATCHPAD_MASK] = data; *(T*)&g_scratchpad[addr & MEM_SCRATCHPAD_MASK] = data;
// Heap mapped by ControlMemory: // Heap mapped by ControlMemory:
} else if ((addr & 0x3E000000) == 0x08000000) { } else if ((addr & 0x3E000000) == 0x08000000) {
// TODO(ShizZy): Writes to this virtual address should be put in physical memory at FCRAM + GSP // TODO(ShizZy): Writes to this virtual address should be put in physical memory at FCRAM + GSP
// heap size... the following is writing to FCRAM + 0, which is actually supposed to be the // heap size... the following is writing to FCRAM + 0, which is actually supposed to be the
// application's GSP heap // application's GSP heap
*(T*)&g_fcram[addr & MEM_FCRAM_MASK] = data; *(T*)&g_fcram[addr & MEM_FCRAM_MASK] = data;
} else if ((addr & 0xFF000000) == 0x14000000) { } else if ((addr & 0xFF000000) == 0x14000000) {
_assert_msg_(MEMMAP, false, "umimplemented write to GSP heap"); _assert_msg_(MEMMAP, false, "umimplemented write to GSP heap");
} else if ((addr & 0xFFF00000) == 0x1EC00000) { } else if ((addr & 0xFFF00000) == 0x1EC00000) {
_assert_msg_(MEMMAP, false, "umimplemented write to IO registers"); _assert_msg_(MEMMAP, false, "umimplemented write to IO registers");
} else if ((addr & 0xFF000000) == 0x1F000000) { } else if ((addr & 0xFF000000) == 0x1F000000) {
_assert_msg_(MEMMAP, false, "umimplemented write to VRAM"); _assert_msg_(MEMMAP, false, "umimplemented write to VRAM");
} else if ((addr & 0xFFF00000) == 0x1FF00000) { } else if ((addr & 0xFFF00000) == 0x1FF00000) {
_assert_msg_(MEMMAP, false, "umimplemented write to DSP memory"); _assert_msg_(MEMMAP, false, "umimplemented write to DSP memory");
} else if ((addr & 0xFFFF0000) == 0x1FF80000) { } else if ((addr & 0xFFFF0000) == 0x1FF80000) {
_assert_msg_(MEMMAP, false, "umimplemented write to Configuration Memory"); _assert_msg_(MEMMAP, false, "umimplemented write to Configuration Memory");
} else if ((addr & 0xFFFFF000) == 0x1FF81000) { } else if ((addr & 0xFFFFF000) == 0x1FF81000) {
_assert_msg_(MEMMAP, false, "umimplemented write to shared page"); _assert_msg_(MEMMAP, false, "umimplemented write to shared page");
} else { } else {
_assert_msg_(MEMMAP, false, "unknown hardware write"); _assert_msg_(MEMMAP, false, "unknown hardware write");
} }
} }
bool IsValidAddress(const u32 addr) { bool IsValidAddress(const u32 addr) {
if ((addr & 0x3E000000) == 0x08000000) { if ((addr & 0x3E000000) == 0x08000000) {
return true; return true;
} else if ((addr & 0x3F800000) == 0x04000000) { } else if ((addr & 0x3F800000) == 0x04000000) {
return true; return true;
} else if ((addr & 0xBFFF0000) == 0x00010000) { } else if ((addr & 0xBFFF0000) == 0x00010000) {
return true; return true;
} else if ((addr & 0x3F000000) >= 0x08000000 && (addr & 0x3F000000) < 0x08000000 + MEM_FCRAM_MASK) { } else if ((addr & 0x3F000000) >= 0x08000000 && (addr & 0x3F000000) < 0x08000000 + MEM_FCRAM_MASK) {
return true; return true;
} else { } else {
return false; return false;
} }
} }
u8 *GetPointer(const u32 addr) { u8 *GetPointer(const u32 addr) {
// TODO(bunnei): Just a stub for now... ImplementMe! // TODO(bunnei): Just a stub for now... ImplementMe!
if ((addr & 0x3E000000) == 0x08000000) { if ((addr & 0x3E000000) == 0x08000000) {
return g_fcram + (addr & MEM_FCRAM_MASK); return g_fcram + (addr & MEM_FCRAM_MASK);
} }
//else if ((addr & 0x3F800000) == 0x04000000) { //else if ((addr & 0x3F800000) == 0x04000000) {
// return g_vram + (addr & MEM_VRAM_MASK); // return g_vram + (addr & MEM_VRAM_MASK);
//} //}
//else if ((addr & 0x3F000000) >= 0x08000000 && (addr & 0x3F000000) < 0x08000000 + g_MemorySize) { //else if ((addr & 0x3F000000) >= 0x08000000 && (addr & 0x3F000000) < 0x08000000 + g_MemorySize) {
// return m_pRAM + (addr & g_MemoryMask); // return m_pRAM + (addr & g_MemoryMask);
//} //}
else { else {
//ERROR_LOG(MEMMAP, "Unknown GetPointer %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]); //ERROR_LOG(MEMMAP, "Unknown GetPointer %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
ERROR_LOG(MEMMAP, "Unknown GetPointer %08x", addr); ERROR_LOG(MEMMAP, "Unknown GetPointer %08x", addr);
static bool reported = false; static bool reported = false;
//if (!reported) { //if (!reported) {
// Reporting::ReportMessage("Unknown GetPointer %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]); // Reporting::ReportMessage("Unknown GetPointer %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
// reported = true; // reported = true;
//} //}
//if (!g_Config.bIgnoreBadMemAccess) { //if (!g_Config.bIgnoreBadMemAccess) {
// Core_EnableStepping(true); // Core_EnableStepping(true);
// host->SetDebugMode(true); // host->SetDebugMode(true);
//} //}
return 0; return 0;
} }
} }
u8 Read8(const u32 addr) { u8 Read8(const u32 addr) {
u8 _var = 0; u8 _var = 0;
ReadFromHardware<u8>(_var, addr); ReadFromHardware<u8>(_var, addr);
return (u8)_var; return (u8)_var;
} }
u16 Read16(const u32 addr) { u16 Read16(const u32 addr) {
u16_le _var = 0; u16_le _var = 0;
ReadFromHardware<u16_le>(_var, addr); ReadFromHardware<u16_le>(_var, addr);
return (u16)_var; return (u16)_var;
} }
u32 Read32(const u32 addr) { u32 Read32(const u32 addr) {
u32_le _var = 0; u32_le _var = 0;
ReadFromHardware<u32_le>(_var, addr); ReadFromHardware<u32_le>(_var, addr);
return _var; return _var;
} }
u64 Read64(const u32 addr) { u64 Read64(const u32 addr) {
u64_le _var = 0; u64_le _var = 0;
ReadFromHardware<u64_le>(_var, addr); ReadFromHardware<u64_le>(_var, addr);
return _var; return _var;
} }
u32 Read8_ZX(const u32 addr) { u32 Read8_ZX(const u32 addr) {
return (u32)Read8(addr); return (u32)Read8(addr);
} }
u32 Read16_ZX(const u32 addr) { u32 Read16_ZX(const u32 addr) {
return (u32)Read16(addr); return (u32)Read16(addr);
} }
void Write8(const u32 addr, const u8 data) { void Write8(const u32 addr, const u8 data) {
WriteToHardware<u8>(addr, data); WriteToHardware<u8>(addr, data);
} }
void Write16(const u32 addr, const u16 data) { void Write16(const u32 addr, const u16 data) {
WriteToHardware<u16_le>(addr, data); WriteToHardware<u16_le>(addr, data);
} }
void Write32(const u32 addr, const u32 data) { void Write32(const u32 addr, const u32 data) {
WriteToHardware<u32_le>(addr, data); WriteToHardware<u32_le>(addr, data);
} }
void Write64(const u32 addr, const u64 data) { void Write64(const u32 addr, const u64 data) {
WriteToHardware<u64_le>(addr, data); WriteToHardware<u64_le>(addr, data);
} }
} // namespace } // namespace