Extend the pkparse test suite with the newly created keys
encrypted using PKCS#8 with PKCS#5 v2.0 with PRF being
SHA224, 256, 384 and 512.
Signed-off-by: Antonio Quartulli <antonio@openvpn.net>
We now have support for the entire SHA family to be used as
PRF in PKCS#5 v2.0, therefore we need to add new keys to test
these new functionalities.
This patch adds the new keys in `tests/data_files` and
commands to generate them in `tests/data_files/Makefile`.
Note that the pkcs8 command in OpenSSL 1.0 called with
the -v2 argument generates keys using PKCS#5 v2.0 with SHA1
as PRF by default.
(This behaviour has changed in OpenSSL 1.1, where the exact same
command instead uses PKCS#5 v2.0 with SHA256)
The new keys are generated by specifying different PRFs with
-v2prf.
Signed-off-by: Antonio Quartulli <antonio@openvpn.net>
Some unit tests for pbkdf2_hmac() have results longer than
99bytes when represented in hexadecimal form.
For this reason extend the result array to accommodate
longer strings.
At the same time make memset() parametric to avoid
bugs in the future.
Signed-off-by: Antonio Quartulli <antonio@openvpn.net>
Test vectors for SHA224,256,384 and 512 have been
generated using Python's hashlib module by the
following oneliner:
import binascii, hashlib
binascii.hexlify(hashlib.pbkdf2_hmac(ALGO, binascii.unhexlify('PASSWORD'), binascii.unhexlify('SALT'), ITER, KEYLEN)))
where ALGO was 'sha224', 'sha256', 'sha384' and 'sha512'
respectively.
Values for PASSWORD, SALT, ITER and KEYLEN were copied from the
existent test vectors for SHA1.
For SHA256 we also have two test vectors coming from RFC7914 Sec 11.
Signed-off-by: Antonio Quartulli <antonio@openvpn.net>
Currently only SHA1 is supported as PRF algorithm for PBKDF2
(PKCS#5 v2.0).
This means that keys encrypted and authenticated using
another algorithm of the SHA family cannot be decrypted.
This deficiency has become particularly incumbent now that
PKIs created with OpenSSL1.1 are encrypting keys using
hmacSHA256 by default (OpenSSL1.0 used PKCS#5 v1.0 by default
and even if v2 was forced, it would still use hmacSHA1).
Enable support for all the digest algorithms of the SHA
family for PKCS#5 v2.0.
Signed-off-by: Antonio Quartulli <antonio@openvpn.net>
MD2, MD4, MD5, DES and SHA-1 are considered weak and their use
constitutes a security risk. If possible, we recommend avoiding
dependencies on them, and considering stronger message digests and
ciphers instead.
A new test for mbedtls_timing_alarm(0) was introduced in PR 1136, which also
fixed it on Unix. Apparently test results on MinGW were not checked at that
point, so we missed that this new test was also failing on this platform.
generate add ctest test-suites, with the --verbose argument to be given
to the test suites.
The verbose output will be shown **only** if ctest is run with `-v` parameter
The verbose argument is to the test-suites, only when run through `ctest`
The race goes this way:
1. ssl_recv() succeeds (ie no signal received yet)
2. processing the message leads to aborting handshake with ret != 0
3. reset ret if we were signaled
4. print error if ret is still non-zero
5. go back to net_accept() which can be interrupted by a signal
We print the error message only if the signal is received between steps 3 and
5, not when it arrives between steps 1 and 3.
This can cause failures in ssl-opt.sh where we check for the presence of "Last
error was..." in the server's output: if we perform step 2, the client will be
notified and exit, then ssl-opt.sh will send SIGTERM to the server, but if it
didn't get a chance to run and pass step 3 in the meantime, we're in trouble.
The purpose of step 3 was to avoid spurious "Last error" messages in the
output so that ssl-opt.sh can check for a successful run by the absence of
that message. However, it is enough to suppress that message when the last
error we get is the one we expect from being interrupted by a signal - doing
more could hide real errors.
Also, improve the messages printed when interrupted to make it easier to
distinguish the two cases - this could be used in a testing script wanted to
check that the server doesn't see the client as disconnecting unexpectedly.
If lsof is not available, wait_server_start uses a fixed timeout,
which can trigger a race condition if the timeout turns out to be too
short. Emit a warning so that we know this is going on from the test
logs.
- Some of the CI machines don't have lsof installed yet, so rely on an sleeping
an arbitrary number of seconds while the server starts. We're seeing
occasional failures with the current delay because the CI machines are highly
loaded, which seems to indicate the current delay is not quite enough, but
hopefully not to far either, so double it.
- While at it, also double the watchdog delay: while I don't remember seeing
much failures due to client timeout, this change doesn't impact normal
running time of the script, so better err on the safe side.
These changes don't affect the test and should only affect the false positive
rate coming from the test framework in those scripts.
1) The MPI test for prime generation missed a return value
check for a call to `mbedtls_mpi_shift_r`. This is neither
critical nor new but should be fixed.
2) The RSA keygeneration example program contained code
initializing an RSA context after a potentially failing
call to CTR DRBG initialization, leaving the corresponding
RSA context free call in the cleanup section orphaned.
The commit fixes this by moving the initializtion of the
RSA context prior to the first potentially failing call.
* mbedtls-2.1:
selftest: fix build error in some configurations
Timing self test: shorten redundant tests
Timing self test: increased duration
Timing self test: increased tolerance
selftest: allow excluding a subset of the tests
selftest: allow running a subset of the tests
selftest: fixed an erroneous return code
selftest: refactor to separate the list of tests from the logic
Timing self test: print some diagnosis information
mbedtls_timing_get_timer: don't use uninitialized memory
timing interface documentation: minor clarifications
Timing: fix mbedtls_set_alarm(0) on Unix/POSIX
* public/pr/1223:
selftest: fix build error in some configurations
Timing self test: shorten redundant tests
Timing self test: increased duration
Timing self test: increased tolerance
selftest: allow excluding a subset of the tests
selftest: allow running a subset of the tests
selftest: fixed an erroneous return code
selftest: refactor to separate the list of tests from the logic
Timing self test: print some diagnosis information
mbedtls_timing_get_timer: don't use uninitialized memory
timing interface documentation: minor clarifications
Timing: fix mbedtls_set_alarm(0) on Unix/POSIX