When a handshake step starts an asynchronous operation, the
application needs to know which SSL connection the operation is for,
so that when the operation completes, the application can wake that
connection up. Therefore the async start callbacks need to take the
SSL context as an argument. It isn't enough to let them set a cookie
in the SSL connection, the application needs to be able to find the
right SSL connection later.
Also pass the SSL context to the other callbacks for consistency. Add
a new field to the handshake that the application can use to store a
per-connection context. This new field replaces the former
context (operation_ctx) that was created by the start function and
passed to the resume function.
Add a boolean flag to the handshake structure to track whether an
asynchronous operation is in progress. This is more robust than
relying on the application to set a non-null application context.
In the refactoring of ssl_parse_encrypted_pms, I advertently broke the
case when decryption signalled an error, with the variable ret getting
overwritten before calculating diff. Move the calculation of diff
immediately after getting the return code to make the connection more
obvious. Also move the calculation of mask immediately after the
calculation of diff, which doesn't change the behavior, because I find
the code clearer that way.
Conflict resolution:
* ChangeLog: put the new entry from my branch in the proper place.
* include/mbedtls/error.h: counted high-level module error codes again.
* include/mbedtls/ssl.h: picked different numeric codes for the
concurrently added errors; made the new error a full sentence per
current standards.
* library/error.c: ran scripts/generate_errors.pl.
* library/ssl_srv.c:
* ssl_prepare_server_key_exchange "DHE key exchanges": the conflict
was due to style corrections in development
(4cb1f4d49c) which I merged with
my refactoring.
* ssl_prepare_server_key_exchange "For key exchanges involving the
server signing", first case, variable declarations: merged line
by line:
* dig_signed_len: added in async
* signature_len: removed in async
* hashlen: type changed to size_t in development
* hash: size changed to MBEDTLS_MD_MAX_SIZE in async
* ret: added in async
* ssl_prepare_server_key_exchange "For key exchanges involving the
server signing", first cae comment: the conflict was due to style
corrections in development (4cb1f4d49c)
which I merged with my comment changes made as part of refactoring
the function.
* ssl_prepare_server_key_exchange "Compute the hash to be signed" if
`md_alg != MBEDTLS_MD_NONE`: conflict between
ebd652fe2d
"ssl_write_server_key_exchange: calculate hashlen explicitly" and
46f5a3e9b4 "Check return codes from
MD in ssl code". I took the code from commit
ca1d742904 made on top of development
which makes mbedtls_ssl_get_key_exchange_md_ssl_tls return the
hash length.
* programs/ssl/ssl_server2.c: multiple conflicts between the introduction
of MBEDTLS_ERR_SSL_ASYNC_IN_PROGRESS and new auxiliary functions and
definitions for async support, and the introduction of idle().
* definitions before main: concurrent additions, kept both.
* main, just after `handshake:`: in the loop around
mbedtls_ssl_handshake(), merge the addition of support for
MBEDTLS_ERR_SSL_ASYNC_IN_PROGRESS and SSL_ASYNC_INJECT_ERROR_CANCEL
with the addition of the idle() call.
* main, if `opt.transport == MBEDTLS_SSL_TRANSPORT_STREAM`: take the
code from development and add a check for
MBEDTLS_ERR_SSL_ASYNC_IN_PROGRESS.
* main, loop around mbedtls_ssl_read() in the datagram case:
take the code from development and add a check for
MBEDTLS_ERR_SSL_ASYNC_IN_PROGRESS; revert to a do...while loop.
* main, loop around mbedtls_ssl_write() in the datagram case:
take the code from development and add a check for
MBEDTLS_ERR_SSL_ASYNC_IN_PROGRESS; revert to a do...while loop.
In mbedtls_ssl_get_key_exchange_md_tls1_2, add an output parameter for
the hash length. The code that calls this function can currently do
without it, but it will need the hash length in the future, when
adding support for a third-party callback to calculate the signature
of the hash.
Reorganize ssl_parse_encrypted_pms so that it first prepares the
ciphertext to decrypt, then decrypts it, then returns either the
decrypted premaster secret or random data in an appropriate manner.
This is in preparation for allowing the private key operation to be
offloaded to an external cryptographic module which can operate
asynchronously. The refactored code no longer calculates state before
the decryption that needs to be saved until after the decryption,
which allows the decryption to be started and later resumed.
Use the public key to extract metadata rather than the public key.
Don't abort early if there is no private key.
This is in preparation for allowing the private key operation to be
offloaded to an external cryptographic module.
Implement SSL asynchronous private operation for the case of a
signature operation in a server.
This is a first implementation. It is functional, but the code is not
clean, with heavy reliance on goto.
The pk layer can infer the hash length from the hash type. Calculate
it explicitly here anyway because it's needed for debugging purposes,
and it's needed for the upcoming feature allowing the signature
operation to be offloaded to an external cryptographic processor, as
the offloading code will need to know what length hash to copy.
In SSL, don't use mbedtls_pk_ec or mbedtls_pk_rsa on a private
signature or decryption key (as opposed to a public key or a key used
for DH/ECDH). Extract the data (it's the same data) from the public
key object instead. This way the code works even if the private key is
opaque or if there is no private key object at all.
Specifically, with an EC key, when checking whether the curve in a
server key matches the handshake parameters, rely only on the offered
certificate and not on the metadata of the private key.
Conflict resolution:
* ChangeLog: put the new entries in their rightful place.
* library/x509write_crt.c: the change in development was whitespace
only, so use the one from the iotssl-1251 feature branch.
This commit fixes a comparison of ssl_session->encrypt_then_mac against the
ETM-unrelated constant MBEDTLS_SSL_EXTENDED_MS_DISABLED. Instead,
MBEDTLS_SSL_ETM_DISABLED should be used.
The typo is has no functional effect since both constants have the same value 0.
Signature algorithm extension was skipped when renegotiation was in
progress, causing the signature algorithm not to be known when
renegotiating, and failing the handshake. Fix removes the renegotiation
step check before parsing the extension.
Signature algorithm extension was skipped when renegotiation was in
progress, causing the signature algorithm not to be known when
renegotiating, and failing the handshake. Fix removes the renegotiation
step check before parsing the extension.
The check `if( *p + n > end )` in `ssl_parse_client_psk_identity` is
unsafe because `*p + n` might overflow, thus bypassing the check. As
`n` is a user-specified value up to 65K, this is relevant if the
library happens to be located in the last 65K of virtual memory.
This commit replaces the check by a safe version.
* gilles/IOTSSL-1330/development:
Changelog entry for the bug fixes
SSLv3: when refusing renegotiation, stop processing
Ignore failures when sending fatal alerts
Cleaned up double variable declaration
Code portability fix
Added changelog entry
Send TLS alerts in many more cases
Skip all non-executables in run-test-suites.pl
SSL tests: server requires auth, client has no certificate
Balanced braces across preprocessor conditionals
Support setting the ports on the command line
* hanno/sig_hash_compatibility:
Improve documentation
Split long lines
Remember suitable hash function for any signature algorithm.
Introduce macros and functions to characterize certain ciphersuites.
Fixed a bug in ssl_srv.c when parsing TLS_FALLBACK_SCSV in the
ciphersuite list that caused it to miss it sometimes. Reported by Hugo
Leisink as issue #810. Fix initially by @andreasag01; this commit
isolates the bug fix and adds a non-regression test.
According to RFC5246 the server can indicate the known Certificate
Authorities or can constrain the aurhorisation space by sending a
certificate list. This part of the message is optional and if omitted,
the client may send any certificate in the response.
The previous behaviour of mbed TLS was to always send the name of all the
CAs that are configured as root CAs. In certain cases this might cause
usability and privacy issues for example:
- If the list of the CA names is longer than the peers input buffer then
the handshake will fail
- If the configured CAs belong to third parties, this message gives away
information on the relations to these third parties
Therefore we introduce an option to suppress the CA list in the
Certificate Request message.
Providing this feature as a runtime option comes with a little cost in
code size and advantages in maintenance and flexibility.