Previously, `ssl_handle_possible_reconnect()` was part of
`ssl_parse_record_header()`, which was required to return a non-zero error
code to indicate a record which should not be further processed because it
was invalid, unexpected, duplicate, .... In this case, some error codes
would lead to some actions to be taken, e.g. `MBEDTLS_ERR_SSL_EARLY_MESSAGE`
to potential buffering of the record, but eventually, the record would be
dropped regardless of the precise value of the error code. The error code
`MBEDTLS_ERR_SSL_HELLO_VERIFY_REQUIRED` returned from
`ssl_handle_possible_reconnect()` did not receive any special treatment and
lead to silent dopping of the record - in particular, it was never returned
to the user.
In the new logic this commit introduces, `ssl_handle_possible_reconnect()` is
part of `ssl_check_client_reconnect()` which is triggered _after_
`ssl_parse_record_header()` found an unexpected record, which is already in
the code-path eventually dropping the record; we want to leave this code-path
only if a valid cookie has been found and we want to reset, but do nothing
otherwise. That's why `ssl_handle_possible_reconnect()` now returns `0` unless
a valid cookie has been found or a fatal error occurred.
Availability of sufficient incoming data should be checked when
it is needed, which is in mbedtls_ssl_fetch_input(), and this
function has the necessary bounds checks in place.
The check is in terms of the internal input buffer length and is
hence likely to be originally intended to protect against overflow
of the input buffer when fetching data from the underlying
transport in mbedtls_ssl_fetch_input(). For locality of reasoning,
it's better to perform such a check close to where it's needed,
and in fact, mbedtls_ssl_fetch_input() _does_ contain an equivalent
bounds check, too, rendering the bounds check in question redundant.
mbedtls_ssl_decrypt_buf() asserts that the passed transform is not NULL,
but the function is only invoked in a single place, and this invocation
is clearly visible to be within a branch ensuring that the incoming
transform isn't NULL. Remove the assertion for the benefit of code-size.
The previous code performed architectural maximum record length checks
both before and after record decryption. Since MBEDTLS_SSL_IN_CONTENT_LEN
bounds the maximum length of the record plaintext, it suffices to check
only once after (potential) decryption.
This must not be confused with the internal check that the record
length is small enough to make the record fit into the internal input
buffer; this is done in mbedtls_ssl_fetch_input().
When MBEDTLS_SSL_ENCRYPT_THEN_MAC is enabled, but not
MBEDTLS_SSL_SOME_MODES_USE_MAC, mbedtls_ssl_derive_keys() and
build_transforms() will attempt to use a non-existent `encrypt_then_mac`
field in the ssl_transform.
Compile [ 93.7%]: ssl_tls.c
[Error] ssl_tls.c@865,14: 'mbedtls_ssl_transform {aka struct mbedtls_ssl_transform}' ha
s no member named 'encrypt_then_mac'
[ERROR] ./mbed-os/features/mbedtls/src/ssl_tls.c: In function 'mbedtls_ssl_derive_keys'
:
./mbed-os/features/mbedtls/src/ssl_tls.c:865:14: error: 'mbedtls_ssl_transform {aka str
uct mbedtls_ssl_transform}' has no member named 'encrypt_then_mac'
transform->encrypt_then_mac = session->encrypt_then_mac;
^~
Change mbedtls_ssl_derive_keys() and build_transforms() to only access
`encrypt_then_mac` if `encrypt_then_mac` is actually present.
Add a regression test to detect when we have regressions with
configurations that do not include any MAC ciphersuites.
Fixes d56ed2491b ("Reduce size of `ssl_transform` if no MAC ciphersuite is enabled")
This commit modifies mbedtls_ssl_get_peer_cid() to also allow passing
NULL pointers in the arguments for the peer's CID value and length, in
case this information is needed.
For example, some users might only be interested in whether the use of
the CID was negotiated, in which case both CID value and length pointers
can be set to NULL. Other users might only be interested in confirming
that the use of CID was negotiated and the peer chose the empty CID,
in which case the CID value pointer only would be set to NULL.
It doesn't make sense to pass a NULL pointer for the CID length but a
non-NULL pointer for the CID value, as the caller has no way of telling
the length of the returned CID - and this case is therefore forbidden.
This commit modifies the CID configuration API mbedtls_ssl_conf_cid_len()
to allow the configuration of the stack's behaviour when receiving an
encrypted DTLS record with unexpected CID.
There are two options:
1. Don't set it, and don't use it during record protection,
guarding the respective paths by a check whether TLS or
DTLS is used.
2. Set it to the default value even for TLS, and avoid the
protocol-dependent branch during record protection.
This commit picks option 2.
This commit changes the stack's behaviour when facing a record
with a non-matching CID. Previously, the stack failed in this
case, while now we silently skip over the current record.
Previously, ssl_get_next_record() would fetch 13 Bytes for the
record header and hand over to ssl_parse_record_header() to parse
and validate these. With the introduction of CID-based records, the
record length is not known in advance, and parsing and validating
must happen at the same time. ssl_parse_record_header() is therefore
rewritten in the following way:
1. Fetch and validate record content type and version.
2. If the record content type indicates a record including a CID,
adjust the record header pointers accordingly; here, we use the
statically configured length of incoming CIDs, avoiding any
elaborate CID parsing mechanism or dependency on the record
epoch, as explained in the previous commit.
3. Fetch the rest of the record header (note: this doesn't actually
fetch anything, but makes sure that the datagram fetched in the
earlier call to ssl_fetch_input() contains enough data).
4. Parse and validate the rest of the record header as before.
This commit modifies the code surrounding the invocations of
ssl_decrypt_buf() and ssl_encrypt_buf() to deal with a change
of record content type during CID-based record encryption/decryption.
mbedtls_ssl_context contains pointers in_buf, in_hdr, in_len, ...
which point to various parts of the header of an incoming TLS or
DTLS record; similarly, there are pointers out_buf, ... for
outgoing records.
This commit adds fields in_cid and out_cid which point to where
the CID of incoming/outgoing records should reside, if present,
namely prior to where the record length resides.
Quoting https://tools.ietf.org/html/draft-ietf-tls-dtls-connection-id-04:
The DTLSInnerPlaintext value is then encrypted and the CID added to
produce the final DTLSCiphertext.
struct {
ContentType special_type = tls12_cid; /* 25 */
ProtocolVersion version;
uint16 epoch;
uint48 sequence_number;
opaque cid[cid_length]; // New field
uint16 length;
opaque enc_content[DTLSCiphertext.length];
} DTLSCiphertext;
For outgoing records, out_cid is set in ssl_update_out_pointers()
based on the settings in the current outgoing transform.
For incoming records, ssl_update_in_pointers() sets in_cid as if no
CID was present, and it is the responsibility of ssl_parse_record_header()
to update the field (as well as in_len, in_msg and in_iv) when parsing
records that do contain a CID. This will be done in a subsequent commit.
Finally, the code around the invocations of ssl_decrypt_buf()
and ssl_encrypt_buf() is adapted to transfer the CID from the
input/output buffer to the CID field in the internal record
structure (which is what ssl_{encrypt/decrypt}_buf() uses).
Note that mbedtls_ssl_in_hdr_len() doesn't need change because
it infers the header length as in_iv - in_hdr, which will account
for the CID for records using such.
Using the Connection ID extension increases the maximum record expansion
because
- the real record content type is added to the plaintext
- the plaintext may be padded with an arbitrary number of
zero bytes, in order to prevent leakage of information
through package length analysis. Currently, we always
pad the plaintext in a minimal way so that its length
is a multiple of 16 Bytes.
This commit adapts the various parts of the library to account
for that additional source of record expansion.
Context:
The CID draft does not require that the length of CIDs used for incoming
records must not change in the course of a connection. Since the record
header does not contain a length field for the CID, this means that if
CIDs of varying lengths are used, the CID length must be inferred from
other aspects of the record header (such as the epoch) and/or by means
outside of the protocol, e.g. by coding its length in the CID itself.
Inferring the CID length from the record's epoch is theoretically possible
in DTLS 1.2, but it requires the information about the epoch to be present
even if the epoch is no longer used: That's because one should silently drop
records from old epochs, but not the entire datagrams to which they belong
(there might be entire flights in a single datagram, including a change of
epoch); however, in order to do so, one needs to parse the record's content
length, the position of which is only known once the CID length for the epoch
is known. In conclusion, it puts a significant burden on the implementation
to infer the CID length from the record epoch, which moreover mangles record
processing with the high-level logic of the protocol (determining which epochs
are in use in which flights, when they are changed, etc. -- this would normally
determine when we drop epochs).
Moreover, with DTLS 1.3, CIDs are no longer uniquely associated to epochs,
but every epoch may use a set of CIDs of varying lengths -- in that case,
it's even theoretically impossible to do record header parsing based on
the epoch configuration only.
We must therefore seek a way for standalone record header parsing, which
means that we must either (a) fix the CID lengths for incoming records,
or (b) allow the application-code to configure a callback to implement
an application-specific CID parsing which would somehow infer the length
of the CID from the CID itself.
Supporting multiple lengths for incoming CIDs significantly increases
complexity while, on the other hand, the restriction to a fixed CID length
for incoming CIDs (which the application controls - in contrast to the
lengths of the CIDs used when writing messages to the peer) doesn't
appear to severely limit the usefulness of the CID extension.
Therefore, the initial implementation of the CID feature will require
a fixed length for incoming CIDs, which is what this commit enforces,
in the following way:
In order to avoid a change of API in case support for variable lengths
CIDs shall be added at some point, we keep mbedtls_ssl_set_cid(), which
includes a CID length parameter, but add a new API mbedtls_ssl_conf_cid_len()
which applies to an SSL configuration, and which fixes the CID length that
any call to mbetls_ssl_set_cid() which applies to an SSL context that is bound
to the given SSL configuration must use.
While this creates a slight redundancy of parameters, it allows to
potentially add an API like mbedtls_ssl_conf_cid_len_cb() later which
could allow users to register a callback which dynamically infers the
length of a CID at record header parsing time, without changing the
rest of the API.
The function mbedtls_ssl_hdr_len() returns the length of the record
header (so far: always 13 Bytes for DTLS, and always 5 Bytes for TLS).
With the introduction of the CID extension, the lengths of record
headers depends on whether the records are incoming or outgoing,
and also on the current transform.
Preparing for this, this commit splits mbedtls_ssl_hdr_len() in two
-- so far unmodified -- functions mbedtls_ssl_in_hdr_len() and
mbedtls_ssl_out_hdr_len() and replaces the uses of mbedtls_ssl_hdr_len()
according to whether they are about incoming or outgoing records.
There is no need to change the signature of mbedtls_ssl_{in/out}_hdr_len()
in preparation for its dependency on the currently active transform,
since the SSL context is passed as an argument, and the currently
active transform is referenced from that.
With the introduction of the CID feature, the stack needs to be able
to handle a change of record content type during record protection,
which in particular means that the record content type check will
need to move or be duplicated.
This commit introduces a tiny static helper function which checks
the validity of record content types, which hopefully makes it
easier to subsequently move or duplicate this check.
With the introduction of the CID extension, the record content type
may change during decryption; we must therefore re-consider every
record content type check that happens before decryption, and either
move or duplicate it to ensure it also applies to records whose
real content type is only revealed during decryption.
This commit does this for the silent dropping of unexpected
ApplicationData records in DTLS. Previously, this was caught
in ssl_parse_record_header(), returning
MBEDTLS_ERR_SSL_UNEXPECTED_RECORD which in ssl_get_next_record()
would lead to silent skipping of the record.
When using CID, this check wouldn't trigger e.g. when delayed
encrypted ApplicationData records come on a CID-based connection
during a renegotiation.
This commit moves the check to mbedtls_ssl_handle_message_type()
and returns MBEDTLS_ERR_SSL_NON_FATAL if it triggers, which leads
so silent skipover in the caller mbedtls_ssl_read_record().
The SSL context structure mbedtls_ssl_context contains several pointers
ssl->in_hdr, ssl->in_len, ssl->in_iv, ssl->in_msg pointing to various
parts of the record header in an incoming record, and they are setup
in the static function ssl_update_in_pointers() based on the _expected_
transform for the next incoming record.
In particular, the pointer ssl->in_msg is set to where the record plaintext
should reside after record decryption, and an assertion double-checks this
after each call to ssl_decrypt_buf().
This commit removes the dependency of ssl_update_in_pointers() on the
expected incoming transform by setting ssl->in_msg to ssl->in_iv --
the beginning of the record content (potentially including the IV) --
and adjusting ssl->in_msg after calling ssl_decrypt_buf() on a protected
record.
Care has to be taken to not load ssl->in_msg before calling
mbedtls_ssl_read_record(), then, which was previously the
case in ssl_parse_server_hello(); the commit fixes that.
If a record exhibits an invalid feature only after successful
authenticated decryption, this is a protocol violation by the
peer and should hence lead to connection failure. The previous
code, however, would silently ignore such records. This commit
fixes this.
So far, the only case to which this applies is the non-acceptance
of empty non-AD records in TLS 1.2. With the present commit, such
records lead to connection failure, while previously, they were
silently ignored.
With the introduction of the Connection ID extension (or TLS 1.3),
this will also apply to records whose real content type -- which
is only revealed during authenticated decryption -- is invalid.
In contrast to other aspects of the Connection ID extension,
the CID-based additional data for MAC computations differs from
the non-CID case even if the CID length is 0, because it
includes the CID length.
Quoting the CID draft 04:
- Block Ciphers:
MAC(MAC_write_key, seq_num +
tls12_cid + // New input
DTLSPlaintext.version +
cid + // New input
cid_length + // New input
length_of_DTLSInnerPlaintext + // New input
DTLSInnerPlaintext.content + // New input
DTLSInnerPlaintext.real_type + // New input
DTLSInnerPlaintext.zeros // New input
)
And similar for AEAD and Encrypt-then-MAC.
This commit temporarily comments the copying of the negotiated CIDs
into the established ::mbedtls_ssl_transform in mbedtls_ssl_derive_keys()
until the CID feature has been fully implemented.
While mbedtls_ssl_decrypt_buf() and mbedtls_ssl_encrypt_buf() do
support CID-based record protection by now and can be unit tested,
the following two changes in the rest of the stack are still missing
before CID-based record protection can be integrated:
- Parsing of CIDs in incoming records.
- Allowing the new CID record content type for incoming records.
- Dealing with a change of record content type during record
decryption.
Further, since mbedtls_ssl_get_peer_cid() judges the use of CIDs by
the CID fields in the currently transforms, this change also requires
temporarily disabling some grepping for ssl_client2 / ssl_server2
debug output in ssl-opt.sh.
This commit modifies ssl_decrypt_buf() and ssl_encrypt_buf()
to include the CID into authentication data during record
protection.
It does not yet implement the new DTLSInnerPlaintext format
from https://tools.ietf.org/html/draft-ietf-tls-dtls-connection-id-04
The guard for the definition of the function was different from the guard on
its only use - make it the same.
This has been caught by tests/scripts/key-exchanges.pl. It had not been caught
by this script in earlier CI runs, because previously USE_PSA_CRYPTO was
disabled in the builds used by this script; enabling it uncovered the issue.
Add an additional function `mbedtls_ssl_export_keys_ext_t()`
for exporting key, that adds additional information such as
the used `tls_prf` and the random bytes.
This commit adds tests exercising mutually inverse pairs of
record encryption and decryption transformations for the various
transformation types allowed in TLS: Stream, CBC, and AEAD.
The hash contexts `ssl_transform->md_ctx_{enc/dec}` are not used if
only AEAD ciphersuites are enabled. This commit removes them from the
`ssl_transform` struct in this case, saving a few bytes.
This commit guards code specific to AEAD, CBC and stream cipher modes
in `ssl_derive_keys` by the respective configuration flags, analogous
to the guards that are already in place in the record decryption and
encryption functions `ssl_decrypt_buf` resp. `ssl_decrypt_buf`.
Analogous to the previous commit, but concerning the record decryption
routine `ssl_decrypt_buf`.
An important change regards the checking of CBC padding:
Prior to this commit, the CBC padding check always read 256 bytes at
the end of the internal record buffer, almost always going past the
boundaries of the record under consideration. In order to stay within
the bounds of the given record, this commit changes this behavior by
always reading the last min(256, plaintext_len) bytes of the record
plaintext buffer and taking into consideration the last `padlen` of
these for the padding check. With this change, the memory access
pattern and runtime of the padding check is entirely determined by
the size of the encrypted record, in particular not giving away
any information on the validity of the padding.
The following depicts the different behaviors:
1) Previous CBC padding check
1.a) Claimed padding length <= plaintext length
+----------------------------------------+----+
| Record plaintext buffer | | PL |
+----------------------------------------+----+
\__ PL __/
+------------------------------------...
| read for padding check ...
+------------------------------------...
|
contents discarded
from here
1.b) Claimed padding length > plaintext length
+----------------------------------------+----+
| Record plaintext buffer | PL |
+----------------------------------------+----+
+-------------------------...
| read for padding check ...
+-------------------------...
|
contents discarded
from here
2) New CBC padding check
+----------------------------------------+----+
| Record plaintext buffer | | PL |
+----------------------------------------+----+
\__ PL __/
+---------------------------------------+
| read for padding check |
+---------------------------------------+
|
contents discarded
until here
The previous version of the record encryption function
`ssl_encrypt_buf` takes the entire SSL context as an argument,
while intuitively, it should only depend on the current security
parameters and the record buffer.
Analyzing the exact dependencies, it turned out that in addition
to the currently active `ssl_transform` instance and the record
information, the encryption function needs access to
- the negotiated protocol version, and
- the status of the encrypt-then-MAC extension.
This commit moves these two fields into `ssl_transform` and
changes the signature of `ssl_encrypt_buf` to only use an instance
of `ssl_transform` and an instance of the new `ssl_record` type.
The `ssl_context` instance is *solely* kept for the debugging macros
which need an SSL context instance.
The benefit of the change is twofold:
1) It avoids the need of the MPS to deal with instances of
`ssl_context`. The MPS should only work with records and
opaque security parameters, which is what the change in
this commit makes progress towards.
2) It significantly eases testing of the encryption function:
independent of any SSL context, the encryption function can
be passed some record buffer to encrypt alongside some arbitrary
choice of parameters, and e.g. be checked to not overflow the
provided memory.
The macro constant `MBEDTLS_SSL_MAC_ADD` defined in `ssl_internal.h`
defines an upper bound for the amount of space needed for the record
authentication tag. Its definition distinguishes between the
presence of an ARC4 or CBC ciphersuite suite, in which case the maximum
size of an enabled SHA digest is used; otherwise, `MBEDTLS_SSL_MAC_ADD`
is set to 16 to accomodate AEAD authentication tags.
This assignment has a flaw in the situation where confidentiality is
not needed and the NULL cipher is in use. In this case, the
authentication tag also uses a SHA digest, but the definition of
`MBEDTLS_SSL_MAC_ADD` doesn't guarantee enough space.
The present commit fixes this by distinguishing between the presence
of *some* ciphersuite using a MAC, including those using a NULL cipher.
For that, the previously internal macro `SSL_SOME_MODES_USE_MAC` from
`ssl_tls.c` is renamed and moved to the public macro
`MBEDTLS_SOME_MODES_USE_MAC` defined in `ssl_internal.h`.
Prior to this commit, the security parameter struct `ssl_transform`
contained a `ciphersuite_info` field pointing to the information
structure for the negotiated ciphersuite. However, the only
information extracted from that structure that was used in the core
encryption and decryption functions `ssl_encrypt_buf`/`ssl_decrypt_buf`
was the authentication tag length in case of an AEAD cipher.
The present commit removes the `ciphersuite_info` field from the
`ssl_transform` structure and adds an explicit `taglen` field
for AEAD authentication tag length.
This is in accordance with the principle that the `ssl_transform`
structure should contain the raw parameters needed for the record
encryption and decryption functions to work, but not the higher-level
information that gave rise to them. For example, the `ssl_transform`
structure implicitly contains the encryption/decryption keys within
their cipher contexts, but it doesn't contain the SSL master or
premaster secrets. Likewise, it contains an explicit `maclen`, while
the status of the 'Truncated HMAC' extension -- which determines the
value of `maclen` when the `ssl_transform` structure is created in
`ssl_derive_keys` -- is not contained in `ssl_transform`.
The `ciphersuite_info` pointer was used in other places outside
the encryption/decryption functions during the handshake, and for
these functions to work, this commit adds a `ciphersuite_info` pointer
field to the handshake-local `ssl_handshake_params` structure.
The `ssl_transform` security parameter structure contains opaque
cipher contexts for use by the record encryption/decryption functions
`ssl_decrypt_buf`/`ssl_encrypt_buf`, while the underlying key material
is configured once in `ssl_derive_keys` and is not explicitly dealt with
anymore afterwards. In particular, the key length is not needed
explicitly by the encryption/decryption functions but is nonetheless
stored in an explicit yet superfluous `keylen` field in `ssl_transform`.
This commit removes this field.
Resolve conflicts by performing the following:
- Ensure calls to mbedtls_x509_crt_verify_* are made with callbacks
* origin/pr/2539:
Make CRT callback tests more robust
Rename constant in client2.c
Fix typo
Add test for configuration specific CRT callback
Fix doxygen documentation of mbedtls_ssl_set_verify()
Add test exercising context-specific CRT callback to ssl-opt.sh
Add cmd to use context-specific CRT callback in ssl_client2
Implement context-specific verification callbacks
Add context-specific CRT verification callbacks
Improve documentation of mbedtls_ssl_conf_verify()