* origin/pr/2481:
Document support for MD2 and MD4 in programs/x509/cert_write
Correct name of X.509 parsing test for well-formed, ill-signed CRT
Add test cases exercising successful verification of MD2/MD4/MD5 CRT
Add test case exercising verification of valid MD2 CRT
Add MD[245] test CRTs to tree
Add instructions for MD[245] test CRTs to tests/data_files/Makefile
Add suppport for MD2 to CSR and CRT writing example programs
Convert further x509parse tests to use lower-case hex data
Correct placement of ChangeLog entry
Adapt ChangeLog
Use SHA-256 instead of MD2 in X.509 CRT parsing tests
Consistently use lower case hex data in X.509 parsing tests
* origin/pr/2497:
Re-generate library/certs.c from script
Add new line at the end of test-ca2.key.enc
Use strict syntax to annotate origin of test data in certs.c
Add run to all.sh exercising !MBEDTLS_PEM_PARSE_C + !MBEDTLS_FS_IO
Allow DHM self test to run without MBEDTLS_PEM_PARSE_C
ssl-opt.sh: Auto-skip tests that use files if MBEDTLS_FS_IO unset
Document origin of hardcoded certificates in library/certs.c
Adapt ChangeLog
Rename server1.der to server1.crt.der
Add DER encoded files to git tree
Add build instructions to generate DER versions of CRTs and keys
Document "none" value for ca_path/ca_file in ssl_client2/ssl_server2
ssl_server2: Skip CA setup if `ca_path` or `ca_file` argument "none"
ssl_client2: Skip CA setup if `ca_path` or `ca_file` argument "none"
Correct white spaces in ssl_server2 and ssl_client2
Adapt ssl_client2 to parse DER encoded test CRTs if PEM is disabled
Adapt ssl_server2 to parse DER encoded test CRTs if PEM is disabled
Remove the "Decrypt empty buffer" test, as ChaCha20 is a stream cipher
and 0 bytes encrypted is identical to a 0 length buffer. The "ChaCha20
Encrypt and decrypt 0 bytes" test will test decryption of a 0 length
buffer.
Previously, even in the Chacha20 and Chacha20-Poly1305 tests, we would
test that decryption of an empty buffer would work with
MBEDTLS_CIPHER_AES_128_CBC.
Make the cipher used with the dec_empty_buf() test configurable, so that
Chacha20 and Chacha20-Poly1305 empty buffer tests can use ciphers other
than AES CBC. Then, make the Chacha20 and Chacha20-Poly1305 empty buffer
tests use the MBEDTLS_CIPHER_CHACHA20 and
MBEDTLS_CIPHER_CHACHA20_POLY1305 cipher suites.
Some functions within the X.509 module return an ASN.1 low level
error code where instead this error code should be wrapped by a
high-level X.509 error code as in the bulk of the module.
Specifically, the following functions are affected:
- mbedtls_x509_get_ext()
- x509_get_version()
- x509_get_uid()
This commit modifies these functions to always return an
X.509 high level error code.
Care has to be taken when adapting `mbetls_x509_get_ext()`:
Currently, the callers `mbedtls_x509_crt_ext()` treat the
return code `MBEDTLS_ERR_ASN1_UNEXPECTED_TAG` specially to
gracefully detect and continue if the extension structure is not
present. Wrapping the ASN.1 error with
`MBEDTLS_ERR_X509_INVALID_EXTENSIONS` and adapting the check
accordingly would mean that an unexpected tag somewhere
down the extension parsing would be ignored by the caller.
The way out of this is the following: Luckily, the extension
structure is always the last field in the surrounding structure,
so if there is some data remaining, it must be an Extension
structure, so we don't need to deal with a tag mismatch gracefully
in the first place.
We may therefore wrap the return code from the initial call to
`mbedtls_asn1_get_tag()` in `mbedtls_x509_get_ext()` by
`MBEDTLS_ERR_X509_INVALID_EXTENSIONS` and simply remove
the special treatment of `MBEDTLS_ERR_ASN1_UNEXPECTED_TAG`
in the callers `x509_crl_get_ext()` and `x509_crt_get_ext()`.
This renders `mbedtls_x509_get_ext()` unsuitable if it ever
happened that an Extension structure is optional and does not
occur at the end of its surrounding structure, but for CRTs
and CRLs, it's fine.
The following tests need to be adapted:
- "TBSCertificate v3, issuerID wrong tag"
The issuerID is optional, so if we look for its presence
but find a different tag, we silently continue and try
parsing the subjectID, and then the extensions. The tag '00'
used in this test doesn't match either of these, and the
previous code would hence return LENGTH_MISMATCH after
unsucessfully trying issuerID, subjectID and Extensions.
With the new code, any data remaining after issuerID and
subjectID _must_ be Extension data, so we fail with
UNEXPECTED_TAG when trying to parse the Extension data.
- "TBSCertificate v3, UIDs, invalid length"
The test hardcodes the expectation of
MBEDTLS_ERR_ASN1_INVALID_LENGTH, which needs to be
wrapped in MBEDTLS_ERR_X509_INVALID_FORMAT now.
Fixes#2431.
When parsing a substructure of an ASN.1 structure, no field within
the substructure must exceed the bounds of the substructure.
Concretely, the `end` pointer passed to the ASN.1 parsing routines
must be updated to point to the end of the substructure while parsing
the latter.
This was previously not the case for the routines
- x509_get_attr_type_and_value(),
- mbedtls_x509_get_crt_ext(),
- mbedtls_x509_get_crl_ext().
These functions kept using the end of the parent structure as the
`end` pointer and would hence allow substructure fields to cross
the substructure boundary. This could lead to successful parsing
of ill-formed X.509 CRTs.
This commit fixes this.
Care has to be taken when adapting `mbedtls_x509_get_crt_ext()`
and `mbedtls_x509_get_crl_ext()`, as the underlying function
`mbedtls_x509_get_ext()` returns `0` if no extensions are present
but doesn't set the variable which holds the bounds of the Extensions
structure in case the latter is present. This commit addresses
this by returning early from `mbedtls_x509_get_crt_ext()` and
`mbedtls_x509_get_crl_ext()` if parsing has reached the end of
the input buffer.
The following X.509 parsing tests need to be adapted:
- "TBSCertificate, issuer two inner set datas"
This test exercises the X.509 CRT parser with a Subject name
which has two empty `AttributeTypeAndValue` structures.
This is supposed to fail with `MBEDTLS_ERR_ASN1_OUT_OF_DATA`
because the parser should attempt to parse the first structure
and fail because of a lack of data. Previously, it failed to
obey the (0-length) bounds of the first AttributeTypeAndValue
structure and would try to interpret the beginning of the second
AttributeTypeAndValue structure as the first field of the first
AttributeTypeAndValue structure, returning an UNEXPECTED_TAG error.
- "TBSCertificate, issuer, no full following string"
This test exercises the parser's behaviour on an AttributeTypeAndValue
structure which contains more data than expected; it should therefore
fail with MBEDTLS_ERR_ASN1_LENGTH_MISMATCH. Because of the missing bounds
check, it previously failed with UNEXPECTED_TAG because it interpreted
the remaining byte in the first AttributeTypeAndValue structure as the
first byte in the second AttributeTypeAndValue structure.
- "SubjectAltName repeated"
This test should exercise two SubjectAltNames extensions in succession,
but a wrong length values makes the second SubjectAltNames extension appear
outside of the Extensions structure. With the new bounds in place, this
therefore fails with a LENGTH_MISMATCH error. This commit adapts the test
data to put the 2nd SubjectAltNames extension inside the Extensions
structure, too.
The X.509 parsing test suite test_suite_x509parse contains a test
exercising X.509 verification for a valid MD4/MD5 certificate in a
profile which doesn't allow MD4/MD5. This commit adds an analogous
test for MD2.
- Replace 'RSA with MD2' OID '2a864886f70d010102' by
'RSA with SHA-256' OID '2a864886f70d01010b':
Only the last byte determines the hash, and
`MBEDTLS_OID_PKCS1_MD2 == MBEDTLS_OID_PKCS1 "\x02"`
`MBEDTLS_OID_PKCS1_SHA256 == MBEDTLS_OID_PKCS1 "\x0b"`
See oid.h.
- Replace MD2 dependency by SHA256 dependency.
- Adapt expected CRT info output.
* origin/pr/2364:
Increase okm_hex buffer to contain null character
Minor modifications to hkdf test
Add explanation for okm_string size
Update ChangeLog
Reduce buffer size of okm
Reduce Stack usage of hkdf test function
* restricted/pr/553:
Fix mbedtls_ecdh_get_params with new ECDH context
Add changelog entry for mbedtls_ecdh_get_params robustness
Fix ecdh_get_params with mismatching group
Add test case for ecdh_get_params with mismatching group
Add test case for ecdh_calc_secret
Fix typo in documentation
It was failing to set the key in the ENCRYPT direction before encrypting.
This just happened to work for GCM and CCM.
After re-encrypting, compare the length to the expected ciphertext
length not the plaintext length. Again this just happens to work for
GCM and CCM since they do not perform any kind of padding.
* public/pr/2429:
Add ChangeLog entry for unused bits in bitstrings
Improve docs for ASN.1 bitstrings and their usage
Add tests for (named) bitstring to suite_asn1write
Fix ASN1 bitstring writing
Add a test case for doing an ECDH calculation by calling
mbedtls_ecdh_get_params on both keys, with keys belonging to
different groups. This should fail, but currently passes.
`test_hkdf` in the hkdf test suites consumed stack of ~6KB with
6 buffers of ~1KB each. This causes stack overflow on some platforms
with smaller stack. The buffer sizes were reduced. By testing, the sizes
can be reduced even further, as the largest seen size is 82 bytes(for okm).
The test suites `test_suite_gcm.aes{128,192,256}_en.data` contains
numerous NIST test vectors for AES-*-GCM against which the GCM
API mbedtls_gcm_xxx() is tested.
However, one level higher at the cipher API, no tests exist which
exercise mbedtls_cipher_auth_{encrypt/decrypt}() for GCM ciphers,
although test_suite_cipher.function contains the test auth_crypt_tv
which does precisely that and is already used e.g. in
test_suite_cipher.ccm.
This commit replicates the test vectors from
test_suite_gcm.aes{128,192,256}_en.data in test_suite_cipher.gcm.data
and adds a run of auth_crypt_tv for each of them.
The conversion was mainly done through the sed command line
```
s/gcm_decrypt_and_verify:\([^:]*\):\([^:]*\):\([^:]*\):\([^:]*\):
\([^:]*\):\([^:]*\):\([^:]*\):\([^:]*\):\([^:]*\):\([^:]*\)/auth_crypt_tv:
\1:\2:\4:\5:\3:\7:\8:\9/
```
Dependent on configured options, not all of the helper functions were being
used, which was leading to warning of unused functions with Clang.
To avoid any complex compile time options, or adding more logic to
generate_test_code.py to screen out unused functions, those functions which were
provoking the warning were changed to remove static, remove them from file
scope, and expose them to the linker.
Document when a context must be initialized or not, when it must be
set up or not, and whether it needs a private key or a public key will
do.
The implementation is sometimes more liberal than the documentation,
accepting a non-set-up context as a context that can't perform the
requested information. This preserves backward compatibility.
The MPI_VALIDATE_RET() macro cannot be used for parameter
validation of mbedtls_mpi_lsb() because this function returns
a size_t.
Use the underlying MBEDTLS_INTERNAL_VALIDATE_RET() insteaed,
returning 0 on failure.
Also, add a test for this behaviour.
For mbedtls_pk_parse_key and mbedtls_pk_parse_keyfile, the password is
optional. Clarify what this means: NULL is ok and means no password.
Validate parameters and test accordingly.
The test that mbedtls_aria_free() accepts NULL parameters
can be performed even if MBEDTLS_CHECK_PARAMS is unset, but
was previously included in the test case aria_invalid_params()
which is only executed if MBEDTLS_CHECK_PARAMS is set.
Parameter validation was previously performed and tested unconditionally
for the ChaCha/Poly modules. This commit therefore only needs go guard the
existing tests accordingly and use the appropriate test macros for parameter
validation.
Previously, one could change the definition of AES_VALIDATE_RET() to return
some other code than MBEDTLS_ERR_AES_BAD_INPUT_DATA, and the test suite
wouldn't notice. Now this modification would make the suite fail as expected.
The test framework for validation of parameters depends on the macro
MBEDTLS_PARAM_FAILED() being set to its default value when building the
library. So far the test framework attempted to define this macro but this was
the wrong place - this definition wouldn't be picked by the library.
Instead, a different approach is taken: skip those tests when the macro is
defined in config.h, as in that case we have no way to know if it will indeed
end up calling mbedtls_param_failed() as we need it to.
This commit was tested by manually ensuring that aes_invalid_params:
- passes (and is not skipped) in the default configuration
- is skipped when MBEDTLS_PARAM_FAILED() is defined in config.h
The previous prototype gave warnings are the strings produced by #cond and
__FILE__ are const, so we shouldn't implicitly cast them to non-const.
While at it modifying most example programs:
- include the header that has the function declaration, so that the definition
can be checked to match by the compiler
- fix whitespace
- make it work even if PLATFORM_C is not defined:
- CHECK_PARAMS is not documented as depending on PLATFORM_C and there is
no reason why it should
- so, remove the corresponding #if defined in each program...
- and add missing #defines for mbedtls_exit when needed
The result has been tested (make all test with -Werror) with the following
configurations:
- full with CHECK_PARAMS with PLATFORM_C
- full with CHECK_PARAMS without PLATFORM_C
- full without CHECK_PARAMS without PLATFORM_C
- full without CHECK_PARAMS with PLATFORM_C
Additionally, it has been manually tested that adding
mbedtls_aes_init( NULL );
near the normal call to mbedtls_aes_init() in programs/aes/aescrypt2.c has the
expected effect when running the program.
It was inconsistent between files: sometimes 3 arguments, sometimes one.
Align to 1 argument for the macro and 3 for the function, because:
- we don't need 3 arguments for the macro, it can add __FILE__ and __LINE__
in its expansion, while the function needs them as parameters to be correct;
- people who re-defined the macro should have flexibility, and 3 arguments
can give the impression they they don't have as much as they actually do;
- the design document has the macro with 1 argument, so let's stick to that.
Change the use of setjmp and longjmp in signalling parameter validation failures
when using the MBEDTLS_CHECK_PARAMS config.h option. This change allows
all calls which might result in a call to the parameter validation failure
handler to always be caught, even without use of the new macros, by placing a
setjmp() in the outer function which calls the test function, which the handler
can jump to.
This has several benefits:
* it allows us to remove the clang compiler warning (-Wclobbered) caused
by local auto variables being in the same function as the call to setjmp.
* removes the need to wrap all function calls in the test functions with the
TEST_ASSERT() macro. Now all parameter validation function calls should be
caught.
The tests for the ECDH key exchange that use the context accessed it
directly. This can't work with the new context, where we can't make any
assumptions about the implementation of the context. This commit works
around this problem and comes with the cost of allocating an extra
structures on the stack when executing the test.
One of the tests is testing an older interface for the sake of backward
compatibility. The new ECDH context is not backward compatible and this
test doesn't make any sense for it, therefore we skip this test in
non-legacy mode.
The recently added `mbedtls_ecdh_setup()` function is not used in the
tests yet. This commit adapts the tests to the new workflow.
Having done that, the old lifecycle is not tested anymore, so we add a
new test to ensure backward compatibility.
Since the AD too long is a limitation on Mbed TLS,
HW accelerators may support this. Run the test for AD too long,
only if `MBEDTLS_CCM_ALT` is not defined.
Addresses comment in #1996.
This commit introduces variants test-ca_utf8.crt,
test-ca_printablestring.crt and test-ca_uppercase.crt
of tests/data_files/test-ca.crt which differ from
test-ca.crt in their choice of string encoding and
upper and lower case letters in the DN field. These
changes should be immaterial to the recovation check,
and three tests are added that crl.pem, which applies
to test-ca.crt, is also considered as applying to
test-ca_*.crt.
The test files were generated using PR #1641 which
- adds a build instruction for test-ca.crt to
tests/data_files/Makefile which allows easy
change of the subject DN.
- changes the default string format from `PrintableString`
to `UTF8String`.
Specifically:
- `test-ca_utf8.crt` was generated by running
`rm test-ca.crt && make test-ca.crt`
on PR #1641.
- `test-ca_uppercase.crt`, too, was generated by running
`rm test-ca.crt && make test-ca.crt`
on PR #1641, after modifying the subject DN line in the build
instruction for `test-ca.crt` in `tests/data_files/Makefile`.
- `test-ca_printable.crt` is a copy of `test-ca.crt`
because at the time of this commit, `PrintableString` is
still the default string format.
This commit introduces variants test-ca_utf8.crt,
test-ca_printablestring.crt and test-ca_uppercase.crt
of tests/data_files/test-ca.crt which differ from
test-ca.crt in their choice of string encoding and
upper and lower case letters in the DN field. These
changes should be immaterial to the recovation check,
and three tests are added that crl.pem, which applies
to test-ca.crt, is also considered as applying to
test-ca_*.crt.
Extend the mbedtls_mpi_is_prime_det test to check that it reports
the number as prime when testing rounds-1 rounds, then reports the
number as composite when testing the full number of rounds.
When using a primality testing function the tolerable error rate depends
on the scheme in question, the required security strength and wether it
is used for key generation or parameter validation. To support all use
cases we need more flexibility than what the old API provides.
Primality tests have to deal with different distribution when generating
primes and when validating primes.
These new tests are testing if mbedtls_mpi_is_prime() is working
properly in the latter setting.
The new tests involve pseudoprimes with maximum number of
non-witnesses. The non-witnesses were generated by printing them
from mpi_miller_rabin(). The pseudoprimes were generated by the
following function:
void gen_monier( mbedtls_mpi* res, int nbits )
{
mbedtls_mpi p_2x_plus_1, p_4x_plus_1, x, tmp;
mbedtls_mpi_init( &p_2x_plus_1 );
mbedtls_mpi_init( &p_4x_plus_1 );
mbedtls_mpi_init( &x ); mbedtls_mpi_init( &tmp );
do
{
mbedtls_mpi_gen_prime( &p_2x_plus_1, nbits >> 1, 0,
rnd_std_rand, NULL );
mbedtls_mpi_sub_int( &x, &p_2x_plus_1, 1 );
mbedtls_mpi_div_int( &x, &tmp, &x, 2 );
if( mbedtls_mpi_get_bit( &x, 0 ) == 0 )
continue;
mbedtls_mpi_mul_int( &p_4x_plus_1, &x, 4 );
mbedtls_mpi_add_int( &p_4x_plus_1, &p_4x_plus_1, 1 );
if( mbedtls_mpi_is_prime( &p_4x_plus_1, rnd_std_rand,
NULL ) == 0 )
break;
} while( 1 );
mbedtls_mpi_mul_mpi( res, &p_2x_plus_1, &p_4x_plus_1 );
}
Functional tests for various payload sizes and output buffer sizes.
When the padding is bad or the plaintext is too large for the output
buffer, verify that function writes some outputs. This doesn't
validate that the implementation is time-constant, but it at least
validates that it doesn't just return early without outputting anything.