Commit Graph

853 Commits

Author SHA1 Message Date
Alistair Francis
f8f3e50372
target/arm: Fix vector operation segfault
Commit 89e68b575 "target/arm: Use vector operations for saturation"
causes this abort() when booting QEMU ARM with a Cortex-A15:

0 0x00007ffff4c2382f in raise () at /usr/lib/libc.so.6
1 0x00007ffff4c0e672 in abort () at /usr/lib/libc.so.6
2 0x00005555559c1839 in disas_neon_data_insn (insn=<optimized out>, s=<optimized out>) at ./target/arm/translate.c:6673
3 0x00005555559c1839 in disas_neon_data_insn (s=<optimized out>, insn=<optimized out>) at ./target/arm/translate.c:6386
4 0x00005555559cd8a4 in disas_arm_insn (insn=4081107068, s=0x7fffe59a9510) at ./target/arm/translate.c:9289
5 0x00005555559cd8a4 in arm_tr_translate_insn (dcbase=0x7fffe59a9510, cpu=<optimized out>) at ./target/arm/translate.c:13612
6 0x00005555558d1d39 in translator_loop (ops=0x5555561cc580 <arm_translator_ops>, db=0x7fffe59a9510, cpu=0x55555686a2f0, tb=<optimized out>, max_insns=<optimized out>) at ./accel/tcg/translator.c:96
7 0x00005555559d10d4 in gen_intermediate_code (cpu=cpu@entry=0x55555686a2f0, tb=tb@entry=0x7fffd7840080 <code_gen_buffer+126091347>, max_insns=max_insns@entry=512) at ./target/arm/translate.c:13901
8 0x00005555558d06b9 in tb_gen_code (cpu=cpu@entry=0x55555686a2f0, pc=3067096216, cs_base=0, flags=192, cflags=-16252928, cflags@entry=524288) at ./accel/tcg/translate-all.c:1736
9 0x00005555558ce467 in tb_find (cf_mask=524288, tb_exit=1, last_tb=0x7fffd783e640 <code_gen_buffer+126084627>, cpu=0x1) at ./accel/tcg/cpu-exec.c:407
10 0x00005555558ce467 in cpu_exec (cpu=cpu@entry=0x55555686a2f0) at ./accel/tcg/cpu-exec.c:728
11 0x000055555588b0cf in tcg_cpu_exec (cpu=0x55555686a2f0) at ./cpus.c:1431
12 0x000055555588d223 in qemu_tcg_cpu_thread_fn (arg=0x55555686a2f0) at ./cpus.c:1735
13 0x000055555588d223 in qemu_tcg_cpu_thread_fn (arg=arg@entry=0x55555686a2f0) at ./cpus.c:1709
14 0x0000555555d2629a in qemu_thread_start (args=<optimized out>) at ./util/qemu-thread-posix.c:502
15 0x00007ffff4db8a92 in start_thread () at /usr/lib/libpthread.

This patch ensures that we don't hit the abort() in the second switch
case in disas_neon_data_insn() as we will return from the first case.

Backports commit 2f143d3ad1c05e91cf2cdf5de06d59a80a95e6c8 from qemu
2019-05-24 18:02:32 -04:00
Richard Henderson
9287750362
target/arm: Simplify BFXIL expansion
The mask implied by the extract is redundant with the one
implied by the deposit. Also, fix spelling of BFXIL.

Backports commit 87eb65a3c45c788a309986d48170a54a0d1c0705 from qemu
2019-05-24 18:01:26 -04:00
Richard Henderson
1778828644
target/arm: Use extract2 for EXTR
This is, after all, how we implement extract2 in tcg/aarch64.

Backports commit 80ac954c369e7e61bd1ed00cef07b63e11f9c734 from qemu
2019-05-24 17:58:58 -04:00
Richard Henderson
3dd7358a53
target/arm: Implement ARMv8.5-RNG
Use the newly introduced infrastructure for guest random numbers.

Backports commit de390645675966cce113bf5394445bc1f8d07c85 from qemu

(with the actual RNG portion disabled to preserve determinism for the
time being).
2019-05-23 15:03:23 -04:00
Richard Henderson
a8df33c37c
target/arm: Put all PAC keys into a structure
This allows us to use a single syscall to initialize them all.

Backports commit 108b3ba891408c4dce93df78261ec4aca38c0e2e from qemu
2019-05-23 14:54:06 -04:00
Richard Henderson
2a4a7b9391
tcg: Use tlb_fill probe from tlb_vaddr_to_host
Most of the existing users would continue around a loop which
would fault the tlb entry in via a normal load/store.

But for AArch64 SVE we have an existing emulation bug wherein we
would mark the first element of a no-fault vector load as faulted
(within the FFR, not via exception) just because we did not have
its address in the TLB. Now we can properly only mark it as faulted
if there really is no valid, readable translation, while still not
raising an exception. (Note that beyond the first element of the
vector, the hardware may report a fault for any reason whatsoever;
with at least one element loaded, forward progress is guaranteed.)

Backports commit 4811e9095c0491bc6f5450e5012c9c4796b9e59d from qemu
2019-05-16 18:27:03 -04:00
Richard Henderson
dab0061a0d
tcg: Use CPUClass::tlb_fill in cputlb.c
We can now use the CPUClass hook instead of a named function.

Create a static tlb_fill function to avoid other changes within
cputlb.c. This also isolates the asserts within. Remove the
named tlb_fill function from all of the targets.

Backports commit c319dc13579a92937bffe02ad2c9f1a550e73973 from qemu
2019-05-16 17:35:37 -04:00
Richard Henderson
31ecdb5341
target/arm: Convert to CPUClass::tlb_fill
Backports commit 7350d553b5066abdc662045d7db5cdb73d0f9d53 from qemu
2019-05-16 16:55:12 -04:00
Richard Henderson
552e48f14e
target/arm: Use tcg_gen_abs_i64 and tcg_gen_gvec_abs
Backports commit 4e027a710673f5d4dc6cff88728bcfd32e4c47b0 from qemu
2019-05-16 16:43:02 -04:00
Richard Henderson
6d1730048d
tcg: Add support for integer absolute value
Remove a function of the same name from target/arm/.
Use a branchless implementation of abs gleaned from gcc.

Backports commit ff1f11f7f8710a768f9313f24bd7f509d3db27e5 from qemu
2019-05-16 16:25:15 -04:00
Richard Henderson
c54b2776f6
tcg: Specify optional vector requirements with a list
Replace the single opcode in .opc with a null-terminated
array in .opt_opc. We still require that all opcodes be
used with the same .vece.

Validate the contents of this list with CONFIG_DEBUG_TCG.
All tcg_gen_*_vec functions will check any list active
during .fniv expansion. Swap the active list in and out
as we expand other opcodes, or take control away from the
front-end function.

Convert all existing vector aware front ends.

Backports commit 53229a7703eeb2bbe101a19a33ef22aaf960c65b from qemu
2019-05-16 15:05:02 -04:00
Peter Maydell
26cb1b8767
target/arm: Stop using variable length array in dc_zva
Currently the dc_zva helper function uses a variable length
array. In fact we know (as the comment above remarks) that
the length of this array is bounded because the architecture
limits the block size and QEMU limits the target page size.
Use a fixed array size and assert that we don't run off it.

Backports commit 63159601fb3e396b28da14cbb71e50ed3f5a0331 from qemu
2019-05-09 17:48:25 -04:00
Peter Maydell
7861820e94
target/arm: Implement XPSR GE bits
In the M-profile architecture, if the CPU implements the DSP extension
then the XPSR has GE bits, in the same way as the A-profile CPSR. When
we added DSP extension support we forgot to add support for reading
and writing the GE bits, which are stored in env->GE. We did put in
the code to add XPSR_GE to the mask of bits to update in the v7m_msr
helper, but forgot it in v7m_mrs. We also must not allow the XPSR we
pull off the stack on exception return to set the nonexistent GE bits.
Correct these errors:
* read and write env->GE in xpsr_read() and xpsr_write()
* only set GE bits on exception return if DSP present
* read GE bits for MRS if DSP present

Backports commit f1e2598c46d480c9e21213a244bc514200762828 from qemu
2019-05-09 17:46:31 -04:00
Lioncash
a71c027063
decodetree: Add DisasContext argument to !function expanders
This does require adjusting all existing users.

Backports commit 451e4ffdb0003ab5ed0d98bd37b385c076aba183 from qemu
2019-05-09 17:40:45 -04:00
Emilio G. Cota
1715f382b4
target/arm: check CF_PARALLEL instead of parallel_cpus
Thereby decoupling the resulting translated code from the current state
of the system.

Backports commit 2399d4e7cec22ecf1c51062d2ebfd45220dbaace from qemu
2019-05-04 22:44:32 -04:00
Peter Maydell
d4549fccfb
target/arm: Enable FPU for Cortex-M4 and Cortex-M33
Enable the FPU by default for the Cortex-M4 and Cortex-M33.

Backports commit 14fd0c31e26b88a2189b3f459b864d5e1faf302a from qemu
2019-04-30 11:29:26 -04:00
Peter Maydell
77ae3982b4
target/arm: Implement VLLDM for v7M CPUs with an FPU
Implement the VLLDM instruction for v7M for the FPU present cas.

Backports commit 956fe143b4f254356496a0a1c479fa632376dfec from qemu
2019-04-30 11:27:54 -04:00
Peter Maydell
b483951046
target/arm: Implement VLSTM for v7M CPUs with an FPU
Implement the VLSTM instruction for v7M for the FPU present case.

Backports commit 019076b036da4444494de38388218040d9d3a26c from qemu
2019-04-30 11:25:44 -04:00
Peter Maydell
a976d7642a
target/arm: Implement M-profile lazy FP state preservation
The M-profile architecture floating point system supports
lazy FP state preservation, where FP registers are not
pushed to the stack when an exception occurs but are instead
only saved if and when the first FP instruction in the exception
handler is executed. Implement this in QEMU, corresponding
to the check of LSPACT in the pseudocode ExecuteFPCheck().

Backports commit e33cf0f8d8c9998a7616684f9d6aa0d181b88803 from qemu
2019-04-30 11:21:50 -04:00
Peter Maydell
72e5ae480d
target/arm: Add lazy-FP-stacking support to v7m_stack_write()
Pushing registers to the stack for v7M needs to handle three cases:
* the "normal" case where we pend exceptions
* an "ignore faults" case where we set FSR bits but
do not pend exceptions (this is used when we are
handling some kinds of derived exception on exception entry)
* a "lazy FP stacking" case, where different FSR bits
are set and the exception is pended differently

Implement this by changing the existing flag argument that
tells us whether to ignore faults or not into an enum that
specifies which of the 3 modes we should handle.

Backports commit a356dacf647506bccdf8ecd23574246a8bf615ac from qemu
2019-04-30 10:59:53 -04:00
Peter Maydell
b1d6bd2792
target/arm: New function armv7m_nvic_set_pending_lazyfp()
In the v7M architecture, if an exception is generated in the process
of doing the lazy stacking of FP registers, the handling of
possible escalation to HardFault is treated differently to the normal
approach: it works based on the saved information about exception
readiness that was stored in the FPCCR when the stack frame was
created. Provide a new function armv7m_nvic_set_pending_lazyfp()
which pends exceptions during lazy stacking, and implements
this logic.

This corresponds to the pseudocode TakePreserveFPException().

Backports the relevant parts of commit
a99ba8ab1601904e0fa20325192fc850362ce80e from qemu
2019-04-30 10:56:54 -04:00
Peter Maydell
3fff653e20
target/arm: New helper function arm_v7m_mmu_idx_all()
Add a new helper function which returns the MMU index to use
for v7M, where the caller specifies all of the security
state, privilege level and whether the execution priority
is negative, and reimplement the existing
arm_v7m_mmu_idx_for_secstate_and_priv() in terms of it.

We are going to need this for the lazy-FP-stacking code.

Backports commit fa6252a988dbe440cd6087bf93cbe0887f0c401b from qemu
2019-04-30 10:54:26 -04:00
Peter Maydell
719231b4c0
target/arm: Activate M-profile floating point context when FPCCR.ASPEN is set
The M-profile FPCCR.ASPEN bit indicates that automatic floating-point
context preservation is enabled. Before executing any floating-point
instruction, if FPCCR.ASPEN is set and the CONTROL FPCA/SFPA bits
indicate that there is no active floating point context then we
must create a new context (by initializing FPSCR and setting
FPCA/SFPA to indicate that the context is now active). In the
pseudocode this is handled by ExecuteFPCheck().

Implement this with a new TB flag which tracks whether we
need to create a new FP context.

Backports commit 6000531e19964756673a5f4b694a649ef883605a from qemu
2019-04-30 10:51:31 -04:00
Peter Maydell
87c8c0fde7
target/arm: Set FPCCR.S when executing M-profile floating point insns
The M-profile FPCCR.S bit indicates the security status of
the floating point context. In the pseudocode ExecuteFPCheck()
function it is unconditionally set to match the current
security state whenever a floating point instruction is
executed.

Implement this by adding a new TB flag which tracks whether
FPCCR.S is different from the current security state, so
that we only need to emit the code to update it in the
less-common case when it is not already set correctly.

Note that we will add the handling for the other work done
by ExecuteFPCheck() in later commits.

Backports commit 6d60c67a1a03be32c3342aff6604cdc5095088d1 from qemu
2019-04-30 10:50:17 -04:00
Peter Maydell
8d726490ff
target/arm: Overlap VECSTRIDE and XSCALE_CPAR TB flags
We are close to running out of TB flags for AArch32; we could
start using the cs_base word, but before we do that we can
economise on our usage by sharing the same bits for the VFP
VECSTRIDE field and the XScale XSCALE_CPAR field. This
works because no XScale CPU ever had VFP.

Backports commit ea7ac69d124c94c6e5579145e727adec9ccbefef from qemu
2019-04-30 10:45:14 -04:00
Peter Maydell
3c1f3548c4
target/arm: Move NS TBFLAG from bit 19 to bit 6
Move the NS TBFLAG down from bit 19 to bit 6, which has not
been used since commit c1e3781090b9d36c60 in 2015, when we
started passing the entire MMU index in the TB flags rather
than just a 'privilege level' bit.

This rearrangement is not strictly necessary, but means that
we can put M-profile-only bits next to each other rather
than scattered across the flag word.

Backports commit 7fbb535f7aeb22896fedfcf18a1eeff48165f1d7 from qemu
2019-04-30 10:41:04 -04:00
Peter Maydell
86776d451e
target/arm: Handle floating point registers in exception return
Handle floating point registers in exception return.
This corresponds to pseudocode functions ValidateExceptionReturn(),
ExceptionReturn(), PopStack() and ConsumeExcStackFrame().

Backports commit 6808c4d2d2826920087533f517472c09edc7b0d2 from qemu
2019-04-30 10:40:12 -04:00
Peter Maydell
2244bb085a
target/arm: Allow for floating point in callee stack integrity check
The magic value pushed onto the callee stack as an integrity
check is different if floating point is present.

Backports commit 0dc51d66fcfcc4c72011cdafb401fd876ca216e7 from qemu
2019-04-30 10:36:58 -04:00
Peter Maydell
746d377221
target/arm: Clean excReturn bits when tail chaining
The TailChain() pseudocode specifies that a tail chaining
exception should sanitize the excReturn all-ones bits and
(if there is no FPU) the excReturn FType bits; we weren't
doing this.

Backports commit 60fba59a2f9a092a44b688df5d058cdd6dd9c276 from qemu
2019-04-30 10:35:36 -04:00
Peter Maydell
ca0ac5dca9
target/arm: Clear CONTROL.SFPA in BXNS and BLXNS
For v8M floating point support, transitions from Secure
to Non-secure state via BLNS and BLXNS must clear the
CONTROL.SFPA bit. (This corresponds to the pseudocode
BranchToNS() function.)

Backports commit 3cd6726f0ba7cc77342ee721bd86094e13b2a42a from qemu
2019-04-30 10:33:25 -04:00
Peter Maydell
c7f5633cfe
target/arm: Implement v7m_update_fpccr()
Implement the code which updates the FPCCR register on an
exception entry where we are going to use lazy FP stacking.
We have to defer to the NVIC to determine whether the
various exceptions are currently ready or not.

Backports commit b593c2b81287040ab6f452afec6281e2f7ee487b from qemu
2019-04-30 10:32:12 -04:00
Peter Maydell
065e60503f
target/arm: Handle floating point registers in exception entry
Handle floating point registers in exception entry.
This corresponds to the FP-specific parts of the pseudocode
functions ActivateException() and PushStack().

We defer the code corresponding to UpdateFPCCR() to a later patch.

Backports commit 0ed377a8013f40653a83f6ad2c9693897522d7dc from qemu
2019-04-30 10:25:23 -04:00
Peter Maydell
c164a9f191
target/arm/helper: don't return early for STKOF faults during stacking
Currently the code in v7m_push_stack() which detects a violation
of the v8M stack limit simply returns early if it does so. This
is OK for the current integer-only code, but won't work for the
floating point handling we're about to add. We need to continue
executing the rest of the function so that we check for other
exceptions like not having permission to use the FPU and so
that we correctly set the FPCCR state if we are doing lazy
stacking. Refactor to avoid the early return.

Backports commit 3432c79a4e7345818d2defcf9e61a1bcb2907f9f from qemu
2019-04-30 10:22:36 -04:00
Peter Maydell
05add081a3
target/arm: Handle SFPA and FPCA bits in reads and writes of CONTROL
The M-profile CONTROL register has two bits -- SFPA and FPCA --
which relate to floating-point support, and should be RES0 otherwise.
Handle them correctly in the MSR/MRS register access code.
Neither is banked between security states, so they are stored
in v7m.control[M_REG_S] regardless of current security state.

Backports commit 2e1c5bcd32014c9ede1b604ae6c2c653de17fc53 from qemu
2019-04-30 10:21:24 -04:00
Peter Maydell
c0cebeb5b5
target/arm: Clear CONTROL_S.SFPA in SG insn if FPU present
If the floating point extension is present, then the SG instruction
must clear the CONTROL_S.SFPA bit. Implement this.

(On a no-FPU system the bit will always be zero, so we don't need
to make the clearing of the bit conditional on ARM_FEATURE_VFP.)

Backports commit 1702071302934af77a072b7ee7c5eadc45b37573 from qemu
2019-04-30 10:20:45 -04:00
Peter Maydell
89baa5cffa
target/arm: Decode FP instructions for M profile
Correct the decode of the M-profile "coprocessor and
floating-point instructions" space:
* op0 == 0b11 is always unallocated
* if the CPU has an FPU then all insns with op1 == 0b101
are floating point and go to disas_vfp_insn()

For the moment we leave VLLDM and VLSTM as NOPs; in
a later commit we will fill in the proper implementation
for the case where an FPU is present.

Backports commit 8859ba3c9625e7ceb5599f457a344bcd7c5e112b from qemu
2019-04-30 10:19:45 -04:00
Peter Maydell
18bb21c035
target/arm: Honour M-profile FP enable bits
Like AArch64, M-profile floating point has no FPEXC enable
bit to gate floating point; so always set the VFPEN TB flag.

M-profile also has CPACR and NSACR similar to A-profile;
they behave slightly differently:
* the CPACR is banked between Secure and Non-Secure
* if the NSACR forces a trap then this is taken to
the Secure state, not the Non-Secure state

Honour the CPACR and NSACR settings. The NSACR handling
requires us to borrow the exception.target_el field
(usually meaningless for M profile) to distinguish the
NOCP UsageFault taken to Secure state from the more
usual fault taken to the current security state.

Backports commit d87513c0abcbcd856f8e1dee2f2d18903b2c3ea2 from qemu
2019-04-30 10:18:21 -04:00
Peter Maydell
c6bb8d483d
target/arm: Disable most VFP sysregs for M-profile
The only "system register" that M-profile floating point exposes
via the VMRS/VMRS instructions is FPSCR, and it does not have
the odd special case for rd==15. Add a check to ensure we only
expose FPSCR.

Backports commit ef9aae2522c22c05df17dd898099dd5c3f20d688 from qemu
2019-04-30 10:15:25 -04:00
Peter Maydell
a4f332f3e9
target/arm: Implement dummy versions of M-profile FP-related registers
The M-profile floating point support has three associated config
registers: FPCAR, FPCCR and FPDSCR. It also makes the registers
CPACR and NSACR have behaviour other than reads-as-zero.
Add support for all of these as simple reads-as-written registers.
We will hook up actual functionality later.

The main complexity here is handling the FPCCR register, which
has a mix of banked and unbanked bits.

Note that we don't share storage with the A-profile
cpu->cp15.nsacr and cpu->cp15.cpacr_el1, though the behaviour
is quite similar, for two reasons:
* the M profile CPACR is banked between security states
* it preserves the invariant that M profile uses no state
inside the cp15 substruct

Backports commit d33abe82c7c9847284a23e575e1078cccab540b5 from qemu
2019-04-30 10:13:41 -04:00
Peter Maydell
978cd9c524
target/arm: Make sure M-profile FPSCR RES0 bits are not settable
Enforce that for M-profile various FPSCR bits which are RES0 there
but have defined meanings on A-profile are never settable. This
ensures that M-profile code can't enable the A-profile behaviour
(notably vector length/stride handling) by accident.

Backports commit 5bcf8ed9401e62c73158ba110864ee1375558bf7 from qemu
2019-04-30 10:12:17 -04:00
Richard Henderson
bca82cde84
tcg: Hoist max_insns computation to tb_gen_code
In order to handle TB's that translate to too much code, we
need to place the control of the length of the translation
in the hands of the code gen master loop.

Backports commit 8b86d6d25807e13a63ab6ea879f976b9f18cc45a from qemu
2019-04-30 09:49:57 -04:00
Lioncash
f6911ea73d
target/arm: Handle AArch32 CRC instructions 2019-04-27 10:50:25 -04:00
Lioncash
c3df12e534
target/arm/translate: Synchronize with Qemu 2019-04-27 10:13:01 -04:00
Lioncash
6d80445fe1
unicorn_arm: Treat registers as unsigned values in casts
It isn't particularly advisable to treat these as signed values, given
the registers themselves have no notion of signedness associated with
them.
2019-04-26 08:48:31 -04:00
Lioncash
f419015aa3
unicorn_arm: Don't steamroll CPSR bits defined as RAZ/SBZP
Prevents bits from being set that should always read as zero according
to the ARM architecture reference manual.
2019-04-26 08:47:50 -04:00
Lioncash
d844d7cc9d
exec: Backport tb_cflags accessor 2019-04-22 06:12:59 -04:00
Lioncash
14f1cb03e9
target/arm/unicorn_arm: Get rid of magic constants where applicable 2019-04-19 20:23:41 -04:00
Lioncash
5968b3d96f
target/arm: Synchronize with qemu 2019-04-19 15:31:18 -04:00
Lioncash
bf6dfeb175
target/arm/translate: Synchronize with qemu
Backports a few other missing pieces from mainline qemu.
2019-04-18 06:22:36 -04:00
Lioncash
5b062dacf2
target/arm: Simplify and correct thumb instruction tracing
This wasn't subtracting the size of the instruction off the PC like how
the ARM mode tracing was performing the tracing. This simplifies it and
makes the behavior identical.
2019-04-18 06:00:15 -04:00