unicorn/docs/COMPILE-NIX.md
naq de842ee76c docs: we no longer requires python2 in building
Backports commit 27cf6617a3d9b0824fe40badf2c6b97d40e395c8 from unicorn.
2020-01-14 09:07:44 -05:00

4.5 KiB

This documentation explains how to compile, install & run Unicorn on MacOSX, Linux, BSD, Solaris, Android & iOS.

To compile for Microsoft Windows, see COMPILE-WINDOWS.md


[1] Tailor Unicorn to your need.

Out of 6 archtitectures supported by Unicorn (Arm, Arm64, M68K, Mips, Sparc, & X86), if you just need several selected archs, choose which ones you want to compile in by editing "config.mk" before going to next steps.

By default, all 6 architectures are compiled. If this is what you want, skip to the section 2.

The other way of customize Unicorn without having to edit config.mk is to pass the desired options on the commandline to ./make.sh. Currently, Unicorn supports 4 options, as follows.

  • UNICORN_ARCHS: specify list of architectures to compiled in.
  • UNICORN_STATIC: build static library.
  • UNICORN_SHARED: build dynamic (shared) library.
  • UNICORN_QEMU_FLAGS: specify extra flags for qemu's configure script

To avoid editing config.mk for these customization, we can pass their values to make.sh, as follows.

    $ UNICORN_ARCHS="arm aarch64 x86" ./make.sh

NOTE: on commandline, put these values in front of ./make.sh, not after it.

For each option, refer to docs/README for more details.

[2] Compile and install from source on *nix

To build Unicorn on *nix (such as MacOSX, Linux, *BSD, Solaris):

  • To compile for current platform, run:

      $ ./make.sh
    

    On Mac OS, to build non-universal binaries that includes only 64-bit code, replace above command with:

      $ ./make.sh macos-universal-no
    
  • To cross-compile Unicorn on 64-bit Linux to target 32-bit binary, cross-compile to 32-bit with:

      $ ./make.sh linux32
    

    After compiling, install Unicorn with:

      $ sudo ./make.sh install
    

    For FreeBSD/OpenBSD, where sudo is unavailable, run:

      $ su; ./make.sh install
    

    Users are then required to enter root password to copy Unicorn into machine system directories.

    Afterwards, run ./samples/sample_all.sh to test the sample emulations.

    NOTE: The core framework installed by "./make.sh install" consist of following files:

      /usr/include/unicorn/unicorn.h
      /usr/include/unicorn/x86.h
      /usr/include/unicorn/arm.h
      /usr/include/unicorn/arm64.h
      /usr/include/unicorn/mips.h
      /usr/include/unicorn/ppc.h
      /usr/include/unicorn/sparc.h
      /usr/include/unicorn/m68k.h
      /usr/lib/libunicorn.so (for Linux/*nix), or /usr/lib/libunicorn.dylib (OSX)
      /usr/lib/libunicorn.a
    

[3] Cross-compile for iOS from Mac OSX.

To cross-compile for iOS (iPhone/iPad/iPod), Mac OSX with XCode installed is required.

  • To cross-compile for ArmV7 (iPod 4, iPad 1/2/3, iPhone4, iPhone4S), run:

      $ ./make.sh ios_armv7
    
  • To cross-compile for ArmV7s (iPad 4, iPhone 5C, iPad mini), run:

      $ ./make.sh ios_armv7s
    
  • To cross-compile for Arm64 (iPhone 5S, iPad mini Retina, iPad Air), run:

      $ ./make.sh ios_arm64
    
  • To cross-compile for all iDevices (armv7 + armv7s + arm64), run:

      $ ./make.sh ios
    

Resulted files libunicorn.dylib, libunicorn.a & tests/test* can then be used on iOS devices.

[4] Cross-compile for Android

To cross-compile for Android (smartphone/tablet), Android NDK is required. NOTE: Only ARM and ARM64 are currently supported.

    $ NDK=/android/android-ndk-r10e ./make.sh cross-android arm

or $ NDK=/android/android-ndk-r10e ./make.sh cross-android arm64

Resulted files libunicorn.so, libunicorn.a & tests/test* can then be used on Android devices.

[5] By default, "cc" (default C compiler on the system) is used as compiler.

  • To use "clang" compiler instead, run the command below:

      $ ./make.sh clang
    
  • To use "gcc" compiler instead, run:

      $ ./make.sh gcc
    

[6] To uninstall Unicorn, run the command below:

    $ sudo ./make.sh uninstall

[7] Language bindings

Look for the bindings under directory bindings/, and refer to README file of corresponding languages.

[8] Unit tests

Mac OS X users will also need the GNU version of binutils (for gobjcopy). It can be easily installed with Homebrew: brew install binutils.

Automated unit tests use the cmocka unit testing framework (https://cmocka.org/). It can be installed in most Linux distros using the package manager, e.g. sudo yum install libcmocka libcmocka-devel. On Mac OS X with Homebrew: brew install cmocka. You can also easily build and install it from source.

You can run the tests by running make test in the project directory. If you don't build some architecture support then the corresponding tests will fail when run.