Rename the macro MBEDTLS_PLATFORM_SETUP_ALT to
MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT to make the name more descriptive
as this macro enables/disables both functions.
Add the following two functions to allow platform setup and teardown
operations for the full library to be hooked in:
* mbedtls_platform_setup()
* mbedtls_platform_teardown()
An mbedtls_platform_context C structure is also added and two internal
functions that are called by the corresponding setup and teardown
functions above:
* mbedtls_internal_platform_setup()
* mbedtls_internal_plartform_teardown()
Finally, the macro MBEDTLS_PLATFORM_SETUP_ALT is also added to allow
mbedtls_platform_context and internal function to be overriden by the
user as needed for a platform.
The functions mbedtls_aes_decrypt and mbedtls_aes_encrypt have been
superseded by mbedtls_aes_internal_decrypt and
mbedtls_aes_internal_encrypt, respectively. Alternative
implementations should now only replace the latter, and leave the
maintenance wrapper definitions of the former untouched.
This commit clarifies this in the documentation of the respective
configuration options MBEDTLS_AES_DECRYPT_ALT and
MBEDTLS_AES_ENCRYPT_ALT.
The previous commit bd5ceee484f201b90a384636ba12de86bd330cba removed
the definition of the global constants
- mbedtls_test_ca_crt_rsa_len,
- mbedtls_test_cli_crt_rsa_len,
- mbedtls_test_ca_crt_rsa, and
- mbedtls_test_cli_crt_rsa.
This commit restores these to maintain ABI compatibility.
Further, it was noticed that without SHA256_C being enabled the
previous code failed to compile because because the SHA1 resp. SHA256
certificates were only defined when the respective SHAXXX_C options
were set, but the emission of the global variable mbedtls_test_ca_crt
was unconditionally defined through the SHA256
certificate. Previously, the RSA SHA1 certificate was unconditionally
defined and used for that.
As a remedy, this commit makes sure some RSA certificate is defined
and exported through the following rule:
1. If SHA256_C is active, define an RSA SHA256 certificate and export
it as mbedtls_test_ca_crt. Also, define SHA1 certificates only if
SHA1_C is set.
2. If SHA256_C is not set, always define SHA1 certificate and export
it as mbedtls_test_ca_crt.
Fix a resource leak on windows platform, in mbedtls_x509_crt_parse_path,
in case a failure. when an error occurs, goto cleanup, and free the
resource, instead of returning error code immediately.
Enable the MBEDTLS_AES_ROM_TABLES option in the
configs/config-no-entropy.h to place AES lookup tables in ROM. This
saves considerable RAM space, a resource that is very limited in small
devices that use this configuration.
Protecting the ECP hardware acceleratior with mutexes is inconsistent with the
philosophy of the library. Pre-existing hardware accelerator interfaces
leave concurrency support to the underlying platform.
Fixes#863
Document the preconditions on the input and output buffers for
the PKCS1 decryption functions
- mbedtls_rsa_pkcs1_decrypt,
- mbedtls_rsa_rsaes_pkcs1_v15_decrypt
- mbedtls_rsa_rsaes_oaep_decrypt
If we didn't walk the whole chain, then there may be any kind of errors in the
part of the chain we didn't check, so setting all flags looks like the safe
thing to do.
Inspired by test code provided by Nicholas Wilson in PR #351.
The test will fail if someone sets MAX_INTERMEDIATE_CA to a value larger than
18 (default is 8), which is hopefully unlikely and can easily be fixed by
running long.sh again with a larger value if it ever happens.
Current behaviour is suboptimal as flags are not set, but currently the goal
is only to document/test existing behaviour.
* restricted/iotssl-1398:
Add ChangeLog entry
Ensure application data records are not kept when fully processed
Add hard assertion to mbedtls_ssl_read_record_layer
Fix mbedtls_ssl_read
Simplify retaining of messages for future processing
This commit fixes the following case: If a client is both expecting a
SERVER_HELLO and has an application data record that's partially
processed in flight (that's the situation the client gets into after
receiving a ServerHelloRequest followed by ApplicationData), a
subsequent call to mbedtls_ssl_read will set keep_current_message = 1
when seeing the unexpected application data, but not reset it to 0
after the application data has been processed. This commit fixes this.
It also documents and suggests how the problem might be solved in a
more structural way on the long run.
This commit adds a hard assertion to mbedtls_ssl_read_record_layer
triggering if both ssl->in_hslen and ssl->in_offt are not 0. This
should never happen, and if it does, there's no sensible way of
telling whether the previous message was a handshake or an application
data message.
There are situations in which it is not clear what message to expect
next. For example, the message following the ServerHello might be
either a Certificate, a ServerKeyExchange or a CertificateRequest. We
deal with this situation in the following way: Initially, the message
processing function for one of the allowed message types is called,
which fetches and decodes a new message. If that message is not the
expected one, the function returns successfully (instead of throwing
an error as usual for unexpected messages), and the handshake
continues to the processing function for the next possible message. To
not have this function fetch a new message, a flag in the SSL context
structure is used to indicate that the last message was retained for
further processing, and if that's set, the following processing
function will not fetch a new record.
This commit simplifies the usage of this message-retaining parameter
by doing the check within the record-fetching routine instead of the
specific message-processing routines. The code gets cleaner this way
and allows retaining messages to be used in other situations as well
without much effort. This will be used in the next commits.